
RoadRunner Scenario
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

RoadRunner Scenario User's Guide
© COPYRIGHT 2022–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2022 Online only New for Version 1.0 (Release 2022a)
September 2022 Online only Revised for Version 1.1 (Release 2022b)
March 2023 Online only Revised for Version 1.2 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Get Started with RoadRunner Scenario
1

RoadRunner Scenario Product Description . 1-2

RoadRunner Scenario Fundamentals . 1-3
Scenes vs. Scenarios . 1-3
Design and Simulate Scenarios . 1-4
Export and Import Scenarios . 1-7
Generate Scenario Variations . 1-7
Simulate Actors with MATLAB and Simulink . 1-10
Cosimulate Actors with CARLA . 1-11

Actors in RoadRunner Scenario . 1-13
Vehicle Actors . 1-13
Pedestrian Actors . 1-17
Actor Default Types and Initial Phases . 1-21
Actor IDs . 1-22

Scenario Parameters . 1-23
Create Parameter Assets . 1-23
Behavior Parameters . 1-24
Global Parameters . 1-26
User-Defined Action Parameters . 1-27
Parameter Data Types . 1-28
Limitations . 1-29

Explore and Simulate a Simple Scenario . 1-30
Open Scenario . 1-30
Simulate Scenario . 1-31
Modify Vehicles . 1-32
Modify Driving Paths . 1-33
Modify Scenario Anchors . 1-35
Modify Scenario Logic . 1-36

Open and Explore Sample Scenarios . 1-40
Open Sample Files . 1-40
Sample Files Included with RoadRunner Scenario 1-40

Import Scenario Data
2

Import Trajectories from ASAM OpenSCENARIO Files 2-2
Import ASAM OpenSCENARIO File Interactively 2-2

iii

Contents

Import ASAM OpenSCENARIO File Programmatically 2-2
Limitations . 2-4

Import Trajectories from CSV Files . 2-5
Import CSV Files Interactively . 2-5
Import CSV Files Programmatically . 2-6
Limitations . 2-7

Import Custom Vehicle Meshes . 2-9
Set Up Bone Hierarchy . 2-9
Assign Materials . 2-10
Export Mesh and Armature . 2-11
Import Mesh to RoadRunner Scenario . 2-13

Import Custom Character Meshes . 2-14
Create Character Mesh . 2-14
Set Up Bone Hierarchy . 2-15
Create Idle, Walk, and Run Animations . 2-17
Import Character into RoadRunner Scenario . 2-17

Design and Simulate Scenarios
3

Design Lane Following Scenario . 3-2
About the Scenario . 3-2
Create New Scenario . 3-2
Add Vehicles . 3-3
Add Speed Change Action . 3-6
Add Speed Change Condition . 3-7
Other Things to Try . 3-8

Design Lane Change Scenario . 3-10
About the Scenario . 3-10
Create New Scenario . 3-10
Add Ego Vehicle . 3-11
Add Lead Vehicle . 3-12
Add Lane Change Action . 3-14
Add Parallel Speed Change Action . 3-16
Set Lane Change Condition . 3-17
Other Things to Try . 3-18

Design Lane Swerve Scenario . 3-20
About the Scenario . 3-20
Create New Scenario . 3-20
Add Ego Vehicle . 3-21
Add Lead Vehicle . 3-22
Add Lane Swerve Actions . 3-23
Add Lane Swerve Conditions . 3-25
Other Things to Try . 3-26

Design Path Following Scenario . 3-28
About the Scenario . 3-28

iv Contents

Create New Scenario . 3-28
Add Vehicle . 3-29
Add On-Road Path Segment . 3-30
Add Off-Road Path Segment . 3-32
Refine Off-Road Path Segment . 3-33
Add Speed Change Along Path . 3-35
Other Things to Try . 3-37

Design Vehicle with Trailer Scenario . 3-39
Add Vehicle with Trailer to Scene . 3-39
Trailers in Simulation . 3-40
Multi-Vehicle Trailers . 3-42

Design Overtake Using Longitudinal Distance Condition Scenario 3-44
About the Scenario . 3-44
Create New Scenario . 3-44
Add Reference Vehicle . 3-45
Add Ego Vehicle . 3-46
Add Lane Change Action . 3-46
Accelerate Ego to Complete Overtake on Reference Vehicle 3-47
Use Longitudinal Distance Condition to Determine Return of Ego to Original

Lane . 3-47
Return Ego to Original Lane . 3-48
Maintain Constant Longitudinal Distance Between Ego and Reference

Vehicle . 3-48

Design Vehicle Following User-Defined Actions Scenario 3-50
Model Vehicle Behavior Using User-Defined Actions in MATLAB 3-50
Model Vehicle Behavior Using User-Defined Actions in Simulink 3-54

Design Vehicle Following User-Defined Events Scenario 3-58
Control a Scenario Simulation using User-Defined Events 3-58

Switch Between Scene and Scenario Editing . 3-62
Switch Between Editing Modes . 3-62
How Scene Editing Affects Scenarios . 3-63
How Scenario Editing Affects Scenes . 3-64

Path Editing . 3-66
Add Path Along Driving Lane . 3-66
Create Lane Changes . 3-67
Extend Path with Additional Segments . 3-67
Split Path into Separate Segments . 3-68
Modify Path Tangents . 3-68
Set Specific Path Lengths . 3-69
Set Precise Waypoint Locations . 3-70
Shift Paths Within Lanes . 3-70
Create Free-Form Paths . 3-71
Export Options for Paths . 3-73

Define Scenario Logic . 3-75
Initial Action Phases . 3-77
Action Phases . 3-84
Conditions . 3-100
Serial Phases . 3-114

v

Parallel Phases . 3-114
Logic Editor During Simulation . 3-115
Logic Editor Limitations . 3-116

Scenario Anchoring System . 3-118
Anchor Object to Road . 3-119
Move Objects Relative to Anchor . 3-120
Manually Add Road Anchors . 3-122
Modify Anchor Attributes . 3-123
Change Anchor Parent . 3-124
Change Travel Direction of Actors . 3-124
Align Objects Using Anchors . 3-125
Set Anchors for Path Waypoints . 3-125
Relocate Scenarios to Other Scenes . 3-126

Lane and Actor Direction in Scenarios . 3-127
Bidirectional Lanes . 3-127
Negative Vehicle Speed . 3-130
Limitations . 3-133

Relocate Scenarios . 3-134
Relocate Scenario Within a Scene . 3-134
Relocate Scenario to New Scene . 3-135

Validate Scenarios . 3-140
Editing Checks . 3-140
Runtime Checks . 3-141
Export Checks . 3-143

Built-In Behavior for Vehicles . 3-145
Lane-Following Behavior . 3-145
Lane-Changing Behavior . 3-147
Lateral Offset Behavior . 3-151
Longitudinal Distance Behavior . 3-153
Path-Following Behavior . 3-154

Specify and Assign Actor Behaviors . 3-156
Actor Behavior in RoadRunner . 3-156
Actor Behavior in MATLAB and Simulink . 3-156
Actor Behavior in CARLA . 3-156

Camera Control in RoadRunner Scenario . 3-157
Visualize Scenario Simulation using Camera Options 3-157

Programmatic Scenario Interfaces
4

Generate Scenario Variations Using gRPC API . 4-2
How the RoadRunner gRPC API Works . 4-2
Open RoadRunner and Start API Server . 4-2
Load Scenario . 4-3
Define Scenario Variables . 4-4

vi Contents

Modify Variables Programmatically . 4-6
Export Single Scenario . 4-8
Export Scenario Variations . 4-8
Extend Scenario Variation Options . 4-11

Reuse Scenarios in Multiple Scenes Using gRPC API 4-13
How the RoadRunner gRPC API Works . 4-13
Open RoadRunner and Start API Server . 4-13
Load and Simulate Scenario . 4-14
Load Scenario into Different Scene . 4-15
Export Scenario from Multiple Scenes . 4-17
Extend Scenario Reuse Options . 4-19

Export Multiple Scenarios Using gRPC API . 4-20
How the RoadRunner gRPC API Works . 4-20
Open RoadRunner and Start API Server . 4-20
Export Single Scenario . 4-21
Export Multiple Scenarios . 4-21
Extend RoadRunner Export Options . 4-23

Simulate a RoadRunner Scenario Using MATLAB Functions 4-24

Export Scenarios
5

Export to ASAM OpenSCENARIO . 5-2
Export Interactively . 5-2
Export Programmatically . 5-3
Visualize Exported Scenario . 5-3
ASAM OpenSCENARIO 1.x Representations . 5-4
ASAM OpenSCENARIO 2.0 Representations . 5-16

Simulate Scenarios with CARLA
6

Overview of RoadRunner Scenario and CARLA Cosimulation 6-2
Scenario Simulation Engine (SSE) . 6-2
CARLA and Cosimulation Bridge . 6-2

CARLA Cosimulation Workflow . 6-4

Set Up CARLA for Cosimulation . 6-5
Install CARLA . 6-5
Generate CARLA Cosimulation Bridge . 6-5
Configure Cosimulation Properties . 6-5

Configure RoadRunner Scenario Model . 6-7
Set Up RoadRunner Scenario Model with Vehicles 6-7
Add CARLA Behavior to Vehicle . 6-9

vii

Export Scenes and Visualizations to CARLA . 6-12
Export Scene from RoadRunner Scenario . 6-12
Build and Add Plugins to CARLA . 6-12
Add Maps and Rebuild CARLA . 6-12

Run Cosimulations with CARLA . 6-14
Run RoadRunner Scenario Simulation with CARLA in Background 6-14
Run RoadRunner Scenario Cosimulation with CARLA Visualizations 6-15

viii Contents

Get Started with RoadRunner Scenario

1

RoadRunner Scenario Product Description
Create and play back scenarios for automated driving simulation

RoadRunner Scenario is an interactive editor that lets you design scenarios for simulating and testing
automated driving systems. Place vehicles and paths, define logic, and parameterize scenarios. You
can then simulate the scenario in the editor. Choose from built-in vehicle actors or design your own
using MATLAB® and Simulink® or CARLA.

RoadRunner Scenario supports in-editor playback for visualizing scenarios and connecting to other
simulators for cosimulation. Scenarios can be exported to ASAM OpenSCENARIO®. These exported
scenarios can then be used in any OpenSCENARIO compliant simulators and players, including
esmini.

The RoadRunner API lets you change the parameters of the scenario to create many variants for
automated tests. You can use the API to automate workflows like placing scenarios in different
scenes, simulating scenarios, and exporting.

1 Get Started with RoadRunner Scenario

1-2

RoadRunner Scenario Fundamentals
RoadRunner Scenario is an interactive editor that enables you to design scenarios for simulating and
testing automated driving systems. You can place vehicles, define their paths and interactions in the
scenario, and then simulate the scenario in the editor. You can also generate multiple variations of
scenarios programmatically, export them to ASAM OpenSCENARIO, and simulate and visualize them
in automated driving simulators and players.

If you design an actor with autonomous behavior in an external simulator such as CARLA, you can
assign that actor behavior to a vehicle in your scenario. You can then cosimulate that actor in
RoadRunner Scenario and the external simulator. You can also cosimulate actors designed in MATLAB
and Simulink and analyze simulation results using MATLAB and Simulink tools.

Scenes vs. Scenarios
RoadRunner Scenario is an add-on product that requires an addition to your RoadRunner license. The
RoadRunner base product enables you to design scenes, which are composed of static elements, such
as roads, lanes, terrain, and traffic signals. This figure shows a sample intersection scene with the
static elements that you can edit.

RoadRunner Scenario enables you to design scenarios, which are composed of dynamic elements
such as moving vehicles. Scenarios are built on top of scenes: to create a scenario, you must first
create a scene. This image shows a sample scenario built off of the scene from the previous image.

 RoadRunner Scenario Fundamentals

1-3

In RoadRunner, only the static elements are visible and editable. In RoadRunner Scenario, the scene
is visible but only the dynamic elements are editable. To switch between scene and scenario editing,
use the Scene Editing (RoadRunner) and Scenario Editing (RoadRunner Scenario) toggle in the
upper-right corner of the application.

This toggle is available only if you have a RoadRunner Scenario license. Otherwise, RoadRunner is by
default in scene editing mode.

Design and Simulate Scenarios
In RoadRunner Scenario, the scenarios you design are composed of actors, which are the objects in
motion within a scenario. Vehicles are one type of actor and a key component of driving scenarios.
The Vehicles folder of the Library Browser contains a variety of vehicle assets that you can drag
into your scenario.

1 Get Started with RoadRunner Scenario

1-4

By selecting an actor and right-clicking within the scenario, you can define paths for the vehicle to
follow. By default, paths snap to lanes, enabling you to quickly create complex paths such as turns
and lane changes. For additional flexibility, you can change the shape of paths by modifying tangent
waypoints, shift paths laterally within a lane, and specify free-form paths that go off-road or disobey
traffic laws.

If you do not specify a path, then actor fall back on their built-in behavior, which for vehicles added to
roads is to drive in their current lane at a constant speed.

To define the interactions between actors, you use the graphic Logic editor, which is available in the
2D Editor pane.

The scenario logic defined in this editor consists of a series of actions with optional conditions that
trigger those actions. Actions and conditions can also occur in parallel, enabling you to build complex
scenarios containing multiple actors that have different goals. For example, this sample logic scenario
shows a vehicle changing lanes and changing speeds when it reaches a certain distance from another
vehicle.

 RoadRunner Scenario Fundamentals

1-5

To test your scenarios, RoadRunner Scenario provides an in-editor simulation tool. From the toolbar,
select the Simulation Tool to enable simulation controls. Using the controls in the Simulation pane,
you can control the pacing and step size of the scenarios.

1 Get Started with RoadRunner Scenario

1-6

During the design and simulation process, RoadRunner Scenario provides validation feedback on
your scenarios. This feedback comes in the form of visual indicators while designing and reports in
the Output pane after simulation. Use this validation feedback to fix validation errors early, instead
of waiting to catch them during the more time-consuming export process.

Export and Import Scenarios
After you design your scenario, you can export it to a supported format such as ASAM
OpenSCENARIO V1.x and V2.0. You can use these exported scenarios in automated driving
simulators and players. For example, this figure shows a visualization of a scenario exported to ASAM
OpenSCENARIO V1.0 in esmini.

If you have scenarios defined in supported formats such as ASAM OpenSCENARIO V1.0, you can
import those scenario files into RoadRunner Scenario, modify the scenarios in the editor, and then re-
export them.

You can export and import files interactively or programmatically. Using either MATLAB functions or
a language-neutral API built on gRPC® technology, you can programmatically export or import
hundreds of files in the language of your choice. Use of the MATLAB functions requires Automated
Driving Toolbox™.

Generate Scenario Variations
By taking a single scenario and varying certain aspects of it programmatically, you can quickly
generate and export hundreds or even thousands of scenarios on which to test autonomous vehicle

 RoadRunner Scenario Fundamentals

1-7

algorithms. For example, you can vary the distances between vehicles in a scenario, or vary vehicle
speeds, colors, or types.

To create a variable, right-click a scenario attribute in the Attributes pane and select Create
Variable. For example, this figure shows a vehicle speed variable being created.

These values appear in the Variables pane.

You can then modify these variables using the RoadRunner gRPC API or corresponding MATLAB
functions (requires Automated Driving Toolbox) and export multiple variations of a scenario
programmatically.

You can also vary scenarios by relocating them within a scene. The anchoring system used in
RoadRunner Scenario makes it easy to relocate scenarios. By dragging an anchor point around in a
scenario, all objects anchored to that point move with it.

In a scenario, an anchor can be:

• A point on a road or junction.
• A point specifying the location of an actor.
• A path waypoint.

You can assign an anchor to any object in a scenario. For example, this figure shows vehicles
anchored to each other, with all vehicles anchored directly or indirectly to a road anchor in lavender.

1 Get Started with RoadRunner Scenario

1-8

• Move objects, such as vehicles, relative to each other, either along lanes or into different lanes.
• Move an entire scenario to a new scene location by dragging a single anchor point.
• Quickly change the travel directions of all vehicles in a scenario.
• Align vehicles with each other or with an anchor point.
• Change the shape of a road while having vehicles maintain their relative positions.

If multiple scenes have a road anchor with the same name, you can also relocate an scenario into an
entirely new scene. In each scene, the scenario is positioned relative to the road anchor.

 RoadRunner Scenario Fundamentals

1-9

RoadRunner provides both interactive and programmatic ways to relocate scenes within scenarios.
Using the programmatic option, you can quickly generate a scenario from multiple scenes.

Simulate Actors with MATLAB and Simulink
You can author RoadRunner actors using MATLAB System object™ and Simulink, associate actor
behavior in RoadRunner scenario, and simulate the scenario.

These are the steps of the workflow for simulating RoadRunner Scenarios with MATLAB and
Simulink:

• Author MATLAB System objects or Simulink models to define actor behavior.
• Associate actor behavior in RoadRunner.
• Optionally, publish an actor behavior.
• Tune the parameters defined in MATLAB or Simulink for RoadRunner simulations.
• Simulate a scenario using the RoadRunner user interface or control simulations programmatically

from MATLAB.

1 Get Started with RoadRunner Scenario

1-10

Cosimulate Actors with CARLA
You can cosimulate a scenario in RoadRunner Scenario and in an external simulator, such as CARLA.
Using an external simulator, you can control vehicle actors to test your automated driving algorithms.

 RoadRunner Scenario Fundamentals

1-11

See Also
Scenario Edit Tool | Simulation Tool | Vehicle Assets

Related Examples
• “Explore and Simulate a Simple Scenario” on page 1-30

More About
• “Switch Between Scene and Scenario Editing” on page 3-62
• “Path Editing” on page 3-66
• “Built-In Behavior for Vehicles” on page 3-145
• “Define Scenario Logic” on page 3-75
• “Validate Scenarios” on page 3-140

1 Get Started with RoadRunner Scenario

1-12

Actors in RoadRunner Scenario
In RoadRunner Scenario, an actor is an object within a scenario that interacts with scenario logic. All
actor assets included with RoadRunner Scenario consist of models that influence scenario logic or
contain scenario logic and perform assigned scenario behaviors. Some actors, such as vehicles and
pedestrians, also have animations that play during simulation, such as spinning wheels or a walk
cycle. You can design scenario behaviors using paths, waypoints, and anchors you create in the scene,
as well as action phases and conditions that you create in the Logic editor. You can also adjust actor
behavior based on the behavior of other actors, or import custom behavior and other user-defined
assets to further refine actor logic. To learn more about logic in RoadRunner Scenario, see “Define
Scenario Logic” on page 3-75.

If you do not manually assign behavior to actors, they behave according to the default logic assigned
by RoadRunner Scenario. However, not all actor types have default logic. Unlike prop models, which
are static meshes you place in a RoadRunner scene in Scene Editing mode, you can place actors
only when using Scenario Editing mode. Both scenes and scenarios use the 3D canvas in
RoadRunner. For more information on the difference between scenes and scenarios, see “Switch
Between Scene and Scenario Editing” on page 3-62.

RoadRunner scenarios can contain these actor types:

• Vehicles
• Pedestrians

Vehicle Actors
Vehicle actors are assets with the Default Type of Vehicle. When placed in a scene, vehicle actors
automatically snap to a lane of a road and face the direction of that lane.

Default Vehicle Logic

When a vehicle actor is placed on a road, RoadRunner Scenario automatically assigns default actor
logic in the form of an initial phase in the Logic editor. This initial phase is an Initialize Speed
action phase that instructs the vehicle actor to follow the direction of its current lane at a constant
speed during simulation. By default, this initial phase has an end condition of 60 seconds and a fail
condition for any collision between two actors.

 Actors in RoadRunner Scenario

1-13

You can create more complex vehicle behavior for a scenario by adding and adjusting action phases
and conditions in the Logic editor. To learn more about vehicle behaviors, actions, conditions, and
defining scenario logic, see “Built-In Behavior for Vehicles” on page 3-145 and “Define Scenario
Logic” on page 3-75.

Vehicle Assets

RoadRunner Scenario provides a default vehicle asset, Sedan, you can access by navigating to the
Asset folder in the RoadRunner Library Browser, then navigating to the Vehicles subfolder.

The RoadRunner Asset Library is an add-on product that contains a collection of additional
RoadRunner Scenario vehicle assets. This table lists the names and icons of the vehicle assets in the
RoadRunner Asset Library. For more details, see “RoadRunner Asset Library Add-On”.

1 Get Started with RoadRunner Scenario

1-14

Additional Vehicle Actor Assets in RoadRunner Asset Library Add-On

Ambulance CementTruc
k

CompactCar DeliveryVa
n

GarbageTru
ck

PickupTruc
k

SchoolBus

SemiTruck SemiTruck_
Trailer01

SemiTruck_
Trailer02

SemiTruck_
Trailer03

SemiTruck_
Trailer04

Suv UtilityTru
ck

You can also create your own custom vehicle meshes to use in RoadRunner Scenario. To learn how to
import custom vehicle meshes, see “Import Custom Vehicle Meshes” on page 2-9.

Vehicle Attributes

The Attributes pane for each vehicle actor contains several categories of attributes you can adjust to
customize the actor. Select a vehicle actor in the Library Browser to view and adjust these
attributes:

• Category
• Mass
• Max Speed
• Max Acceleration
• Max Deceleration
• Max Steering Angle
• Default Color

 Actors in RoadRunner Scenario

1-15

Note The vehicle actor attributes Category, Mass, Max Speed, Max Acceleration, Max
Deceleration, Max Steering Angle, and Default Color do not affect the simulation, but
RoadRunner Scenario stores and saves the asset values within the RoadRunner project and within
exported scenarios containing vehicle actors.

Select a vehicle actor in the scenario to view and adjust these attributes:

• Name
• Actor Id
• Color
• Actor Type
• Behavior
• Parent Attachment
• Enable Anchoring
• Anchor
• Lock To Anchor
• Forward Offset
• Reference Line
• Relative To
• Offset From
• Lane Offset
• Travel Direction
• Lateral Offset
• Direction
• Vertical Offset

1 Get Started with RoadRunner Scenario

1-16

You can change the color for most vehicle actors. However, some actors, such as the Ambulance or
GarbageTruck, contain a predefined Default Color and do not visually reflect any color selected in
the Default Color or Color field of the Attributes pane in RoadRunner. To learn more about vehicle
assets and their attributes, see Vehicle Assets.

Ego, Lead, and Reference Vehicles

Ego, lead, and reference refer to vehicles in a scenario based on their behavior.

• Ego vehicle – Refers to vehicle actors that contain sensors that perceive the environment around
the vehicle. Ego vehicles typically have custom behavior (such as behavior created with CARLA)
that affects how they respond to their environment.

• Lead vehicle – Refers to a vehicle traveling in front of, and in the same lane as, the ego vehicle.
• Reference vehicle – Refers to a vehicle actor by which other actors in the scenario define their

behavior. Other actors can reference the behavior, position, and other attributes of a reference
vehicle.

Pedestrian Actors
Pedestrian actors have a Default Type of Character and a Category of Pedestrian in the
Attributes pane. Pedestrian actors are similar to vehicle actors in that they perform actions in a

 Actors in RoadRunner Scenario

1-17

scenario. However, they have different path-following behavior, and do not automatically snap to, or
follow, roads. You must manually define their routing by creating paths or trajectories. To learn more
about paths, see “Path Editing” on page 3-66.

Default Pedestrian Logic

Like vehicle actors, pedestrian actors follow logic defined in the Logic editor during scenario
simulation. When placed in a scene, pedestrian actors also have a default initial phase, an end
condition of 60 seconds, and a fail condition for any collision between two actors. However, you must
also specify a path or trajectory for them to follow. If you attempt to simulate a scenario containing a
pedestrian actor without an assigned path or trajectory, the simulation fails and returns an error in
the Output pane.

Pedestrian Assets

RoadRunner Scenario provides a default character asset, Citizen_Male, you can access by
navigating to the Asset folder in the RoadRunner Library Browser, then navigating to the
Characters subfolder.

You can also create your own custom character meshes to use in RoadRunner Scenario. To learn how
to import custom character meshes, see “Import Custom Character Meshes” on page 2-14.

1 Get Started with RoadRunner Scenario

1-18

Pedestrian Attributes

The Attributes pane for each pedestrian actor contains several categories of attributes you can
adjust to customize the actor. When you select a pedestrian actor in the Library Browser, the
Attributes pane displays the Category attribute and a list of additional files used by the pedestrian
actor for these attributes:

• Skin
• Skeleton
• Idle Animation
• Walk Animation
• Run Animation

Note The pedestrian actor attribute Category does not affect the simulation. However, RoadRunner
Scenario stores and saves the Category attribute value within the RoadRunner project and within
exported scenarios containing pedestrian actors.

Select a pedestrian actor in the scenario to view and adjust these attributes:

• Name
• Actor Id
• Color
• Actor Type
• Behavior
• Parent Attachment
• Enable Anchoring
• Anchor

 Actors in RoadRunner Scenario

1-19

• Lock To Anchor
• Forward Offset
• Reference Line
• Relative To
• Offset From
• Lane Offset
• Travel Direction
• Lateral Offset
• Direction
• Vertical Offset

While you can specify the Color attribute for pedestrian actors doing so does not affect the visual
appearance of the model. Like some vehicle actors, the colors of the Citizen_Male actor in
RoadRunner Scenario are predefined. To learn more about character assets and their attributes, see
Character Assets.

1 Get Started with RoadRunner Scenario

1-20

Actor Default Types and Initial Phases
To function as an actor, a vehicle or character asset must have the Default Type of Vehicle or
Character, respectively. These types assign the default logic to an actor when you place it in a
scenario, and enable the actor to perform the actions assigned to it through the Logic editor.

For the simulation to run, every vehicle and pedestrian actor must also contain an initial phase.
RoadRunner Scenario creates these automatically when you place a vehicle or pedestrian actor in a
scenario. If you delete the initial phase, RoadRunner Scenario first displays a warning message
stating that the simulation cannot run without the initial phase, and provides two options: Cancel or
Delete Anyway. Select Cancel to cancel the delete operation, and Delete Anyway to delete the
initial phase. Running the simulation without an initial phase for any vehicle or pedestrian actor in a
scenario causes the simulation to fail and return an error in the Output pane.

Remove Initial Phases from Vehicle and Pedestrian Actors

If you want to place a vehicle in a scene as a prop without an initial phase or other scenario logic,
change the Default Type to Prop Model.

To convert a vehicle actor to a prop, in the Library Browser, right-click the vehicle asset and, from
the context menu, select Default Type, then select Prop Model.

You cannot directly convert pedestrian actors to props due to the additional skeleton and animation
file references assigned to Character assets upon creation. However, because the asset file for the
character mesh has a Default Type of Prop Model, you can place the character mesh as a prop in a
scene without an accompanying initial phase.

 Actors in RoadRunner Scenario

1-21

To access the character mesh file of the Citizen_Male pedestrian actor, in the Characters folder
of the Library Browser, navigate to the Citizen_Male subfolder. The
Male_Citizen_T_Pose.fbx file is the character mesh.

To place the Male_Citizen_T_Pose.fbx as a prop in a scene, first switch to Scene Editing mode,
then drag the asset file from the Library Browser into the scene canvas. Because character meshes
are prop models, which do not reference accompanying animation files, the model displays only its
default pose when placed in the scene.

Like other RoadRunner prop assets, when you convert an actor to a prop and place it in a scene, you
can adjust its position and rotation. However, once converted to props, actors no longer have
associated scenario logic or animations, and do not move or influence scenario behavior when you
simulate the scenario. You can place props only while Scene Editing mode is active.

Actor IDs
Each actor requires a unique Actor Id. If you attempt to simulate a scenario in which two or more
actors share the same Actor Id, the simulation fails and returns an error in the Output pane.
RoadRunner Scenario automatically assigns each actor a unique Actor Id when you place them in the
scenario, but you can manually set the Actor Id value for an actor in the Attributes pane. The Actor
Id field accepts only positive integer values.

See Also

Related Examples
• “Explore and Simulate a Simple Scenario” on page 1-30
• “Open and Explore Sample Scenarios” on page 1-40

More About
• “RoadRunner Scenario Fundamentals” on page 1-3
• “Define Scenario Logic” on page 3-75
• “Built-In Behavior for Vehicles” on page 3-145
• “Path Editing” on page 3-66
• Vehicle Assets
• Character Assets

1 Get Started with RoadRunner Scenario

1-22

Scenario Parameters
In RoadRunner Scenario, parameters names, values, and data types that you can alter during
simulation run time. They are any condition or state that changes over the course of a simulation.

You can use parameters to build complex scenario logic by adding them to scenario elements such as
behaviors, global parameters, and user-defined actions.

• Behavior parameters affect the behavior of specific actors within a scenario.
• Global parameters affect the entire scenario.
• User-defined action parameters affect action phase behavior within scenario logic.

RoadRunner Scenario stores parameters in different types of asset files within the Library Browser
based on whether they are action assets, behavior assets, or parameter collection assets. When you
select a parameter asset, or the logic element to which a parameter asset is assigned, the Attributes
pane displays the names and values of that parameter. You can define parameters directly in
RoadRunner Scenario, or create them in an external application like MATLAB, Simulink, or CARLA
and import the parameter data into RoadRunner Scenario. You can also export parameter data to
ASAM OpenSCENARIO.

Create Parameter Assets
To create an action, behavior, or parameter collection asset in RoadRunner Scenario, right-click an
empty space in the right pane of the Library Browser. Then, in the context menu, select New, then
Action, Behavior, or Parameter Collection. RoadRunner Scenario creates an empty asset of the
selected type in the current folder.

 Scenario Parameters

1-23

You can set initial parameter values by selecting and action, behavior, or parameter collection asset in
the Library Browser. Then, in the Attributes pane, specify the parameter names in the
corresponding Name fields, data types in the corresponding Data Type drop-down lists, and values
in the corresponding Value fields.

Note Specify parameters in RoadRunner Scenario using the same value and data types as in
MATLAB.

To adjust scenario behavior during the simulation run time, reference or change parameters by using
action phases and conditions.

• Conditions reference parameters and compare them against specified values.
• Action phases reference parameters and change their values.

To learn more about action phases and conditions, see “Define Scenario Logic” on page 3-75.

Behavior Parameters
RoadRunner Scenario stores behavior parameters in behavior assets. Behavior parameters affect the
behavior of specific actors within a scenario, enabling you to control actor behavior within
RoadRunner Scenario or external simulators, like CARLA or Simulink.

You can define behavior parameters directly in RoadRunner Scenario, or you can create custom
behaviors in MATLAB, Simulink, or an external simulator such as CARLA and export them to
RoadRunner Scenario. To learn more about building simulations with MATLAB and Simulink and
exporting behaviors to RoadRunner Scenario, see “Overview of Simulating RoadRunner Scenarios
with MATLAB and Simulink” (Automated Driving Toolbox) and “Publish Actor Behavior as Proto File,
Package, Action Asset or Event Asset” (Automated Driving Toolbox). To learn more about configuring
your scenario using CARLA behavior, see “Configure RoadRunner Scenario Model” on page 6-7.

1 Get Started with RoadRunner Scenario

1-24

Select a behavior asset in the Library Browser to create or view behavior parameters in the
Attributes pane. Use the Platform field to select the platform from which to define the behavior
parameters:

• RoadRunner – Specify behavior parameters using RoadRunner Scenario. Click Add Parameter to
create a parameter and define its value directly in the Attributes pane.

• MATLAB/Simulink – Specify behavior parameters using custom behaviors created in MATLAB or
Simulink. In the File Name field, specify the full path to the desired file.

• External – Specify behavior parameters using custom behaviors created in external sources, like
CARLA. Specify the platform name in the Platform Name field, and use the File Name field to
enter the full path to the desired file.

Note RoadRunner Scenario currently supports only CARLA as an entry in the Platform Name field.

You can add additional parameters to imported behavior assets by clicking Add Parameter in the
Attributes pane.

To assign a behavior asset to an actor, select the actor in the scenario, then drag the behavior asset
from the Library Browser to the Behavior field in the Attributes pane of the actor.

 Scenario Parameters

1-25

You can change or reference behavior parameters during the simulation by, in the Logic editor, using
the Change Behavior Parameter action phase and Behavior Parameter condition respectively.
For more information about behavior parameter action phases, conditions, and the Logic editor, see
“Define Scenario Logic” on page 3-75.

Global Parameters
Unlike behavior parameters, which affect individual actors, global parameters affect the entire
scenario and use parameter values stored in parameter collection assets. A parameter collection is a
group of parameters that you can use in multiple scenarios. Adding a parameter collection to the
Global Parameters of a scenario enables other scenario elements, such as action phases and
conditions, to reference the parameter values stored in the asset. Global parameters are flexible, and
you can use them to represent different types of scenario-wide parameters such as speed limit or time
of day.

To view the global parameters for the scenario, and any associated parameter collection, select the
global parameters icon in the lower-right corner of the scenario canvas.

To assign a parameter collection to a scenario, open the Attributes pane for Global Parameters and
drag the parameter collection asset from the Library Browser to the Parameter Asset field.

1 Get Started with RoadRunner Scenario

1-26

By default, RoadRunner Scenario references global parameters from the associated parameter
collection asset. To initialize parameter values, in the global parameters Attributes pane, under
Global Parameters, select the check boxes next to the corresponding parameter names.

To change or reference global parameters during simulation run time in the Logic editor, use the
Change Global Parameter action phase and Global Parameter condition respectively. For more
information about global parameter action phases, conditions, and the Logic editor, see “Define
Scenario Logic” on page 3-75.

User-Defined Action Parameters
User-defined action parameters are similar to behaviors in that they affect action phase behavior
within scenario logic. RoadRunner Scenario defines and stores user-defined action parameters in
action assets.

To reference user-defined action parameters in a scenario, in the Logic editor, add a User Defined
action phase. Then, select the User Defined action phase to access its Attributes pane, and drag
the action asset from the Library Browser to the Action Asset field.

You can use user-defined action parameters to represent vehicle characteristics, such as braking
force or steering angle, that you can model using actor attributes like pose and velocity. To learn
more about user-defined action parameters in scenario logic, see “Define Scenario Logic” on page 3-
75.

 Scenario Parameters

1-27

Parameter Data Types
RoadRunner Scenario supports these data types for parameters: string, double, uint16, int32,
uint32, boolean, and datetime. When you define parameters in an asset, you can specify the data
type of each parameter value.

To define the data type for a parameter, in the Library Browser, select an asset that contains
parameters and, in the Attributes pane, select a data type from the Data Type list. You can then
specify the value of the parameter in the Value field. Note that each asset can contain parameters
with different data types. Parameter assets imported from MATLAB use the string data type by
default.

To specify a parameter for an action phase or condition that references a behavior or parameter
collection asset, select the action phase or condition and, in the Attributes pane, in the Change
Behavior Parameter, Change Global Parameter, Behavior Parameter, or Global Parameter
section, select the parameter to reference from the Name list. The Name list contains the names and
associated data types of all parameters defined in the specified asset file.

For user-defined action assets, in the Attribute pane of the associated action phase, under User
Defined, the Parameters section lists the name, data type, and value for each parameter the asset
defines.

The Value field of a parameter must be a valid value for the selected data type. RoadRunner Scenario
validates parameter values upon simulation or export. If RoadRunner Scenario cannot convert the
value to the selected data type, then the validation fails and returns an error in the Output pane.

1 Get Started with RoadRunner Scenario

1-28

Limitations
Behavior parameters defined in MATLAB or Simulink and imported into RoadRunner Scenario
become initial values for their behavior asset and have the default data type of string.

User-defined action parameters defined in MATLAB or Simulink and imported into RoadRunner
Scenario become initial values for their action asset and must have a data type supported by
RoadRunner Scenario.

You cannot edit the initial values of imported parameter assets within RoadRunner Scenario. To
change the initial values of imported parameters, you must edit them in MATLAB or Simulink. You
can still use actions phases in the Logic editor to alter the values of imported parameters over the
course of the simulation.

See Also

Related Examples
• “Explore and Simulate a Simple Scenario” on page 1-30
• “Design Vehicle Following User-Defined Actions Scenario” on page 3-50

More About
• “RoadRunner Scenario Fundamentals” on page 1-3
• “Define Scenario Logic” on page 3-75
• “Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink” (Automated

Driving Toolbox)
• “Publish Actor Behavior as Proto File, Package, Action Asset or Event Asset” (Automated Driving

Toolbox)
• “Built-In Behavior for Vehicles” on page 3-145

 Scenario Parameters

1-29

Explore and Simulate a Simple Scenario
In this example, you explore a sample scenario in the RoadRunner Scenario interactive editor to learn
the basics of scenario design and simulation. This example assumes that you have prior knowledge of
working with RoadRunner, and that you have already created a project. For more details, see “Get
Started with RoadRunner” and “RoadRunner Project and Scene System”. If this is your first time
working with RoadRunner Scenario, consider reading “RoadRunner Scenario Fundamentals” on page
1-3 first.

Open Scenario
Open the sample scene and scenario used in this example.

1 Open the RoadRunner application and, from the start page, select Open Scene.
2 Navigate to the Scenes folder of the current project and select the ScenarioBasic.rrscene

scene. RoadRunner Scenario opens the scene in the editing canvas.
3 Switch to scenario editing mode. From the top-right corner of the RoadRunner application, select

Scene Editing, then Scenario Editing.

4 From the File menu, select Open Scenario into Current Scene.
5 Navigate to the Scenarios folder of the current project and select the

TrajectoryCutIn.rrscenario scenario. RoadRunner Scenario opens the scenario in the
editing canvas.

1 Get Started with RoadRunner Scenario

1-30

Tip To avoid overwriting the original scenario, create and work with a copy of the scenario.
From the File menu, select Save Scenario As. Name the scenario MyScenario.rrscenario.

In Scenario Editing mode, the dynamic scenario elements, such as the vehicles and their paths, are
active for editing. The static scene elements, such as the roads and trees, are locked. To switch
between editing the scenario and the scene, use the yellow Scene Editing or Scenario Editing
toggle in the upper-right corner of the RoadRunner application.

Simulate Scenario
This scenario contains a white sedan named Ego and a red sedan named Lead. The vehicles follow
predefined driving paths during simulation. Simulate the scenario and observe how the vehicles
interact.

1
From the RoadRunner Scenario menu, click the Simulation Tool on the RoadRunner
Scenario toolbar.

2 In the Simulation pane on the right, click Play.

Note If the simulation runs too quickly, use the slider in the Simulation pane to slow down the
pace of the simulation.

 Explore and Simulate a Simple Scenario

1-31

In this scenario, the red sedan begins driving immediately. The white sedan begins driving after
some delay and then cuts into the lane of the red sedan. Shortly after the cut-in, the red sedan
speeds up and, upon reaching a target speed, slows to a stop. The white sedan, after the cut-in,
drives behind the red sedan and matches the speed of the red sedan until it comes to a stop.

3 During simulation, the scenario elements become locked for editing. When you are done

simulating, switch back to scenario editing mode by clicking the Scenario Edit Tool on the
RoadRunner Scenario toolbar.

Modify Vehicles
Vehicles in RoadRunner Scenario are available from the Vehicles folder of the Library Browser.
Try adding or modifying vehicles, and then switching to the Simulation Tool to observe the effects
on simulation. The table lists some sample vehicle modifications.

Description Example
Change the color of a vehicle by
selecting a vehicle and then
selecting a new color from the
Attributes pane.

Note Not all vehicles have their
colors visualized in the scenario
editor, but their color values are
included on export.

This image shows a sedan that has had its color changed from
white to pink.

1 Get Started with RoadRunner Scenario

1-32

Description Example
Change the type of a vehicle by
selecting a vehicle and then
dragging a new vehicle asset
from the Library Browser onto
the Vehicle Type image
thumbnail in the Attributes
pane. Additional vehicle types
are available with Vehicle
Assets.

This image shows the red sedan changing to a garbage truck.

Add a new vehicle by dragging a
vehicle asset from the Library
Browser into the scenario
editing canvas. During
simulation, vehicles without
driving paths follow their lanes
by default.

This school bus drives on its own and turns right at the exit during
simulation.

Modify Driving Paths
When you select a driving path, the path turns red. The final waypoint appears as a yellow pinpoint
icon, and intermediate waypoints appear as white pinpoint icons. Try modifying the driving paths in

 Explore and Simulate a Simple Scenario

1-33

the scenario, and then switch to the Simulation Tool to observe the effects on simulation. The table
lists some sample driving path modifications.

Description Example
Click and drag vehicles to
change their starting position in
the simulation. The driving
paths automatically update to
reflect the road and lane shapes
at the new starting position.

Dragging the white sedan changes the point at which it starts its
cut-in, which can cause the simulation to end in collision.

Change driving paths by
clicking and dragging the last
waypoint in the path. By default,
driving paths follow the center
lanes and follow the traffic laws
of the road network, so moving
the path to certain lanes can
dramatically change its length.

To extend a path with new
waypoints, select the path and
then right-click in the scenario.
You can also split a path by
right-clicking within a path
segment to form new waypoints.

When you move the last waypoint of the red sedan into an
opposing lane, the path makes a loop so that the sedan can turn
around and drive in the opposite direction.

1 Get Started with RoadRunner Scenario

1-34

Description Example
Create free-form paths by
selecting path segments and
then selecting Freeform in the
Attributes pane.

If you specify a path segment as free-form, then you can specify a
path using a series of waypoints. You can have the path move into
an opposing lane without obeying traffic laws or have the path go
off the road.

Change the position of a vehicle
within its lane by selecting a
path waypoint and updating the
Lateral Offset value in the
Attributes pane.

The white sedan veers to the left within its lane. It has a path
waypoint with a Lateral Offset value of -2 meters (2 meters to
the left of the lane center).

Modify Scenario Anchors
RoadRunner Scenario uses an anchoring system to specify the relative positions of objects. By moving
objects designated as anchors, you can move an entire scenario to a new location in a scene.

 Explore and Simulate a Simple Scenario

1-35

Hide and show anchors for all actors in the scenario by clicking Show All Anchors on the
RoadRunner Scenario toolbar. Anchors are always displayed when you select an entity that
references them.

When you add objects to a road, they become attached to road anchors. In this scenario, the vehicles
are anchored to the ScenarioStart anchor on the left side of the intersection. Try dragging this
anchor. The vehicles and their paths move along with it.

An anchor can also be a path waypoint or another vehicle. For example, select the white sedan and
observe that, in the Attributes pane, its Anchor is set to the Lead actor. Now, try dragging both
vehicles.

• When you drag the red sedan, the white sedan moves with it, because the red sedan is the parent
anchor of the white sedan.

• When you drag the white sedan, the red sedan does not move with it.

Modify Scenario Logic
In the 2D Editor pane, the Logic editor defines the interaction between vehicles in the scenario. The
graphical interface consists of various action phases and the conditions that trigger those action
phases. During simulation, the Logic editor displays the status of the actions and conditions. Green
indicates completed actions and conditions, orange indicates active ones, and gray indicates ones
that have not run.

Explore the aspects of the scenario logic.

Initialization Phases

The first phases in the Logic editor are initial phases. They define the actions that the vehicles take
at the start of simulation.

1 Get Started with RoadRunner Scenario

1-36

Click the two initial phases and observe the attributes of the phases in the Attributes pane. Both
vehicles include an Initialize Speed action. Try changing the initial Speed values of the vehicles
and observe the effects on simulation.

Condition Phases

The circular nodes specify conditions that must be met before the vehicles can start their next
actions. You can add a condition after any phase.

Select the condition node for the red sedan. The red sedan has a Simulation Time condition with
the Time attribute set to 2 seconds. This condition means that at the start of simulation, the vehicle
waits until two seconds have elapsed before performing its next action. Try increasing this value and
observing the effects on simulation. For example, try setting Time to 10 seconds. The white sedan
now completes its cut-in maneuver and matches the speed of the red sedan before the red sedan
speeds up, as reflected by this scenario logic.

Now select the condition node for the white sedan. The white sedan has a Distance to Point
condition. The scenario canvas displays this point, which is a point along the path of the red sedan.
When the red sedan reaches any point within this radius, the white sedan begins its next action.

 Explore and Simulate a Simple Scenario

1-37

Try modifying the attributes for this condition to see how they affect the simulation. Moving the path
waypoint that triggers the condition can also change the condition.

You can also try adding additional conditions by right-clicking any node after an action phase and
selecting a condition from the Attributes pane. For example, try adding a Duration condition after
the speed-up phase of the red sedan, and observe how the simulation changes.

You can add a condition, including a fail condition, after the entire simulation.

Action Phases

The subsequent phases after the conditions are action phases. This scenario contains only speed
change actions.

Select the action phase for the white sedan. The Attributes pane displays the attributes for the
Change Speed action. Try modifying these attributes and observing the effects on simulation. For
example:

• Set Direction so that the white sedan drives at a constant rate faster or slower than the red
sedan.

• Under Dynamics, set Time to 10 seconds so that the white sedan takes longer to change its
speed to match the red sedan.

1 Get Started with RoadRunner Scenario

1-38

You can change the units of speed and acceleration used by the vehicle actors in RoadRunner
Scenario. You can select from these units of speed:

• Feet per second (ft/s)
• Kilometers per hour (km/h)
• Meters per second (m/s)
• Miles per hour (mph)

You can select from these units of acceleration:

• Feet per second squared (ft/s^2)
• g-force (g)
• Kilometers per hour per second(km/h-s)
• Meters per second squared (m/s^2)
• Miles per hour per second (mph/s)

To access these unit options, in Scenario Editing mode, from the RoadRunner Scenario toolbar,
select Edit, then Preferences . The changes in speed and acceleration units are reflected in the
Attributes pane for the vehicle assets and action phases.

You can also try selecting different actions, or adding new actions by right-clicking an action phase
and adding it after, above, or below the selected phase. Actions above and below a phase occur in
parallel with the selected phase.

See Also
Vehicle Assets

Related Examples
• “Design Lane Following Scenario” on page 3-2
• “Design Lane Change Scenario” on page 3-10
• “Design Lane Swerve Scenario” on page 3-20
• “Design Path Following Scenario” on page 3-28
• “Export to ASAM OpenSCENARIO” on page 5-2

More About
• “Switch Between Scene and Scenario Editing” on page 3-62
• “Path Editing” on page 3-66
• “Define Scenario Logic” on page 3-75
• “Scenario Anchoring System” on page 3-118

 Explore and Simulate a Simple Scenario

1-39

Open and Explore Sample Scenarios
RoadRunner Scenario provides several prebuilt sample scenario files that demonstrate different kinds
of scenario logic and behavior.

These sample files assume that you have already created a RoadRunner project. For more details, see
“RoadRunner Project and Scene System”. If this is your first time working with RoadRunner Scenario,
consider reading “RoadRunner Scenario Fundamentals” on page 1-3 and exploring the “Get Started
with RoadRunner” tutorials first.

Open Sample Files
To open and observe the sample scenario files, follow these steps:

1 Open the RoadRunner application and, from the start page, select Open Scene.
2 Navigate to the Scenes folder of the current project and select the scene

ScenarioBasic.rrscene. RoadRunner Scenario opens the scene in the editing canvas.
3 Switch to scenario editing mode. In the top-right corner of RoadRunner, select Scene Editing,

then Scenario Editing.
4 From the File menu, select Open Scenario into Current Scene.
5 Navigate to the Scenarios folder of the current project and select the sample scenario file you

want to open. RoadRunner Scenario opens the scenario into the current scene.
6

Select the Simulation Tool and, in the Simulation pane, select Play to run the simulation
and observe the vehicle and logic behavior.

Sample Files Included with RoadRunner Scenario
This table lists the names of the sample scenario files, as well as a description of the scenario and an
image of the logic used for each sample.

1 Get Started with RoadRunner Scenario

1-40

Sample Scenario Files

Filename Scenario Description Scenario Logic
FreeDrive.rrscenario Demonstrates default scenario

logic and vehicle actor behavior.

SwervingLeadVehicle.rrsc
enario

Demonstrates sequential action
phases in the Logic editor.

CutInAndSlow.rrscenario Demonstrates a combination of
parallel and sequential action
phases in the Logic editor.

DelayedMatchSpeed.rrscen
ario

Demonstrates several
mechanisms for building
sequential scenario logic, with
each actor using different action
phases and conditions to
achieve the same speed
matching result.

KeepSpaceGap.rrscenario Demonstrates continuous action
phases. When set to
Continuous, action phases
continue until another action
phase interrupts them or the
simulation ends.

 Open and Explore Sample Scenarios

1-41

Filename Scenario Description Scenario Logic
TrajectoryFollowing.rrsc
enario

Demonstrates different
mechanisms for defining speeds
when using trajectories. The
yellow sedan and pedestrian use
Change Speed action phases
with different scenario logic.
The white sedan uses Waypoint
Time Data in the trajectory it
follows.

LeadCollision.rrscenario Demonstrates the use of
collision conditions for
individual actors, as well as for
an end condition of the scenario.

LaneChangeInterruptsSwer
ve.rrscenario

Demonstrates the behaviors of
different action phases when an
end condition stops the scenario
before they complete.

UserExtensions.rrscenari
o

Demonstrates the control of
scenario logic through user-
defined action, behavior, and
parameter assets.

You can apply the concepts demonstrated in these sample scenarios to design your own scenario
logic. For more information on scenario logic, see “Define Scenario Logic” on page 3-75.

See Also

Related Examples
• “Design Lane Following Scenario” on page 3-2
• “Design Lane Change Scenario” on page 3-10
• “Design Lane Swerve Scenario” on page 3-20
• “Design Path Following Scenario” on page 3-28

More About
• “RoadRunner Scenario Fundamentals” on page 1-3

1 Get Started with RoadRunner Scenario

1-42

• “Define Scenario Logic” on page 3-75
• “Built-In Behavior for Vehicles” on page 3-145
• “Scenario Anchoring System” on page 3-118

 Open and Explore Sample Scenarios

1-43

Import Scenario Data

• “Import Trajectories from ASAM OpenSCENARIO Files” on page 2-2
• “Import Trajectories from CSV Files” on page 2-5
• “Import Custom Vehicle Meshes” on page 2-9
• “Import Custom Character Meshes” on page 2-14

2

Import Trajectories from ASAM OpenSCENARIO Files
ASAM OpenSCENARIO is an open file format that describes the dynamic content for an automated
driving simulation. Using RoadRunner Scenario, you can import scenarios from an ASAM
OpenSCENARIO version 1.0 file.

RoadRunner Scenario supports importing initial target positions, initial speeds, and polyline
trajectories of vehicles specified in the Init section of an ASAM OpenSCENARIO 1.0 file. If the input
ASAM OpenSCENARIO 1.0 file specifies absolute time domain values of trajectory waypoints using
the TimeReference element of the FollowTrajectoryAction action, then RoadRunner Scenario
imports trajectory waypoints with the timing data specified in the Vertex elements of that action.
Otherwise, RoadRunner Scenario ignores the specified time domain values while importing trajectory
waypoints.

Note RoadRunner Scenario does not import any elements defined in the Story section of an ASAM
OpenSCENARIO 1.0 file.

Import ASAM OpenSCENARIO File Interactively
To import scenarios from ASAM OpenSCENARIO file using the RoadRunner Scenario user interface,
follow these steps:

1 From the Tools menu, select Scenario Editing to switch to scenario editing mode.
2 From the File menu, select Import, then ASAM OpenSCENARIO 1.0 Trajectories.
3 In the Import ASAM OpenSCENARIO dialog box, specify the File path by navigating to a

directory containing a valid ASAM OpenSCENARIO 1.0 file of type .xosc. The directory must
also contain all the associated files, such as an ASAM OpenDRIVE® file and catalog files.

4 Click Import.

Tip To avoid any conflicts with an existing scene or scenario, best practice is to clear any existing
scene or scenario before importing an ASAM OpenSCENARIO file.

Import ASAM OpenSCENARIO File Programmatically
To import the ASAM OpenSCENARIO file programmatically, use the Import remote procedure call
(RPC) method. For background information on how the RoadRunner API works, see “Control
RoadRunner Programmatically Using gRPC API”.

This example primarily shows Windows® commands and file paths to call the RoadRunner API to
import an ASAM OpenSCENARIO file, but this API also works on Linux®.

To use the command-line API to control RoadRunner remotely, you must first start the API server on
an IP network port. Start the API server by opening a RoadRunner project, which you can do
programmatically by using the AppRoadRunner executable file.

From the command line, navigate to the folder that contains the AppRoadRunner executable file. For
example, this code shows the default installation location of the executable file on Windows:

2 Import Scenario Data

2-2

cd "C:\Program Files\RoadRunner R2023a\bin\win64"

This code shows the default installation location of the executable file on Linux:

cd /usr/local/RoadRunner_R2023a/bin/glnxa64

Open RoadRunner to an existing project and set the port over which to run the server. Make these
updates to the code:

• Replace the projectPath option value, C:\RR\MyProject, with a path to a valid RoadRunner
project on your system. If you do not have an existing project, open RoadRunner and create one
interactively. See “RoadRunner Project and Scene System”.

• (Optional) Replace the apiPort option value, 54321, with an IP network port number of your
choice, between 1024 and 65535, inclusive. If you omit the apiPort option, then RoadRunner
opens to its default port of 35707.

AppRoadRunner --projectPath="C:\RR\MyProject" --apiPort=54321

RoadRunner opens to a new scene in the specified project.

The Output pane displays the port on which the RoadRunner API server is running.

Switch to scenario editing mode. In the top-right corner of RoadRunner, select Scene Editing, then
Scenario Editing. The Output pane displays an additional message indicating that the Scenario API
server is running on its default port. This server is for cosimulating scenarios with MATLAB and
Simulink, or with external simulators such as CARLA. The commands used in this example do not
communicate with this server.

Import an ASAM OpenSCENARIO file of the format .xosc into the current scene. To use your own
file, update the file_path value to the path to your .xosc file and update the serverAddress
value to use the apiPort value you specified when opening RoadRunner. If you used the default port,
omit the serverAddress option.
CmdRoadRunnerApi "Import(file_path='C:\OSC\MyOpenSCENARIOFile.xosc' format_name='OpenScenario')" --serverAddress localhost:54321

 Import Trajectories from ASAM OpenSCENARIO Files

2-3

Limitations
• RoadRunner Scenario supports importing only these actions from the Init section of an ASAM

OpenSCENARIO 1.0 file.

• TeleportAction
• SpeedAction
• FollowTrajectoryAction

Position type for the TeleportAction element must be either WorldPosition or
LanePosition.

RoadRunner Scenario does not import elements specified in the Story section of an ASAM
OpenSCENARIO 1.0 file.

• If the Init section of your specified file contains any unsupported actions for an actor, then that
actor is not imported.

• Importing entities other than vehicles is not supported.

See Also

Related Examples
• Export to ASAM OpenSCENARIO on page 5-2
• “Importing ASAM OpenDRIVE Files”
• “Export to ASAM OpenDRIVE”
• “Control RoadRunner Programmatically Using gRPC API”
• “Generate Scenario Variations Using gRPC API” on page 4-2

External Websites
• ASAM OpenSCENARIO

2 Import Scenario Data

2-4

https://www.asam.net/standards/detail/openscenario/

Import Trajectories from CSV Files
Using RoadRunner Scenario, you can import trajectory data from CSV files both interactively and
programmatically.

CSV files store trajectory data in a column format, with each header indicating the type of data within
the underlying column.

This table lists the supported header names for the data columns of each component in the CSV file,
and the unit of measure for that component. Header names are case sensitive.

Supported Header Names and Units
Component Units Supported Names
Position X meters x, xpos, posx, positionx,

xposition
Position Y meters y, ypos, posy, positiony,

yposition
Position Z meters z, zpos, posz, positionz,

zposition
Time seconds t, time, timestamp,

pointtime, pttime
Yaw radians h, heading, yaw
Pitch radians p, pitch
Roll radians r, roll

Note CSV files must contain X position and Y position components.

Import CSV Files Interactively
To import a trajectory from a CSV file using the RoadRunner Scenario user interface, follow these
steps:

1 Select the toggle in the upper-right corner of the application and select Scenario Editing to
switch to scenario editing mode. Alternatively press Shift+2.

2 On the toolbar, select File, then Import, then CSV Trajectory.
3 Specify the path for the CSV file you wish to import by clicking the … button and browse to the

location of the file. When you select a file, RoadRunner Scenario automatically detects the
column names within the file and displays the associated components in the Import CSV
Trajectory dialog box.

4 Select Import, and once the import is complete, RoadRunner Scenario displays the Import CSV
Trajectory Results dialog box. The Output pane displays any errors encountered during import.
If the import process does not encounter any errors, the Output pane is blank and the dialog box
displays the “Import CSV Trajectory succeeded” message.

5 Locate the newly imported trajectory. If the trajectory is not visible in the workspace, it might be
located outside the view range of the workspace camera. Zoom out until the trajectory is visible,
and then select either the trajectory or accompanying vehicle actor and press F to frame the
selection in the workspace.

 Import Trajectories from CSV Files

2-5

6
To simulate the vehicle traveling along the trajectory, select the Simulation Tool from the
toolbar. Then, in the Simulation pane, under Simulation Controls, select Play.

Import CSV Files Programmatically
You can also import CSV files programmatically from the command line by following these steps:

Note Before importing CSV files programmatically, you must already be running RoadRunner
Scenario with the workspace open.

1 From the command line, navigate to the directory that contains the program files for your
RoadRunner installation. For example, this is the default path on Microsoft® Windows 10
machines, where versionNumber is the version of your RoadRunner Scenario installation, such
as R2022b:

C:\ProgramFiles\RoadRunner versionNumber\bin\win64

2 Verify that the folder contains the file CmdRoadRunnerApi.exe.
3 Run CmdRoadRunnerApi.exe, specifying the full path to the CSV file you want to import, as

well as the file format name.

CmdRoadRunnerApi.exe -c "Import(file_path='Your File Path.csv'
format_name='CSV Trajectory')"

• Your File Path.csv is the full path of the file.
• The format name for a CSV file is CSV Trajectory.

This code shows an example of a full path. The location and name of your file may differ.

CmdRoadRunnerApi.exe -c "Import(file_path='C:\User\Documents\RoadRunnerProject\MyCSVs\Trajectory.csv' format_name='CSV Trajectory')"

Once you execute the command, RoadRunner Scenario imports the specified CSV file. To verify the
import and test the trajectory, follow steps 5 and 6 of the Import CSV Files Interactively section.

Set Additional Attributes when Importing CSV Trajectories Programmatically

When importing CSV files, you can use the csv_trajectory_settings.actor_attributes
object to specify the following optional attributes for the actor that will be created:

• name – Specifies the Name attribute of the actor.
• id – Specifies the Actor Id attribute of the actor.
• color – Specifies the Color attribute of the actor
• asset_path – Specifies the asset path for the Asset Type attribute of the actor.
• behavior_asset_path – Specifies the asset path for the Behavior attribute of the actor.

Additionally, you can use csv_trajectory_settings.spawn_time and
csv_trajectory_settings.remove_time to specify a spawn time and a removal time,
respectively, for the actor you want to import.

2 Import Scenario Data

2-6

The spawn_time setting assigns the actor a Wait action phase with a Duration (in seconds) of your
specified value in the scenario Logic editor. After the Wait action phase is complete, the actor
spawns in the scenario.

The remove_time setting removes the actor from the scenario when the simulation reaches the
specified time value. For more information about removing actors during simulation run time, see
“Remove Actor Actions” on page 3-98.

This code shows an example of how to specify an actor name, asset type and spawn time when
importing a CSV file. The locations and names of your files may differ.

CmdRoadRunnerApi.exe -c "Import(file_path='C:\User\Documents\RoadRunnerProject\MyCSVs\Trajectory.csv' format_name='CSV Trajectory' csv_trajectory_settings.actor_attributes.name='Name' csv_trajectory_settings.actor_attributes.asset_path='Vehicles/sedan.fbx' csv_trajectory_settings.spawn_time.value='2.0')"

If you do not specify any additional settings when importing a CSV file, RoadRunner Scenario assigns
a default sedan actor named vehicle to the trajectory. To learn more about CSV trajectory settings
and programmatic scenario interfaces, see import_settings.proto and “Programmatic Scenario
Interfaces”.

Limitations
CSV importing in RoadRunner Scenario supports only the header names listed in the Supported
Header Names and Units table. If a CSV file contains headers that CSV importing does not
recognize, RoadRunner Scenario ignores the data in the corresponding columns. To prevent
RoadRunner Scenario from ignoring column data, modify the header name of each column to reflect
one of the supported header names.

If a CSV file is missing either the X position or Y position component, RoadRunner Scenario fails to
import the file.

Each row of data within an imported CSV file must contain the same number of commas as in the
header row.

You cannot add imported trajectories to existing actors within a scenario. Importing a trajectory
creates a new vehicle actor and assigns the trajectory to the newly created vehicle actor.

The RoadRunner Scenario user interface does not support setting attributes for actors created with
imported trajectories. You can only programmatically set attributes for actors created with imported
trajectories.

Once you remove an actor from the scenario with the remove_time setting, you cannot add that
same actor back to the scenario during simulation run time.

See Also

Related Examples
• “Importing ASAM OpenDRIVE Files”
• “Import Custom Vehicle Meshes” on page 2-9
• “Control RoadRunner Programmatically Using gRPC API”
• “Generate Scenario Variations Using gRPC API” on page 4-2

 Import Trajectories from CSV Files

2-7

More About
• “Create, Import, and Modify Assets”
• “Import Trajectories from ASAM OpenSCENARIO Files” on page 2-2

2 Import Scenario Data

2-8

Import Custom Vehicle Meshes
This example shows you how to create and import a vehicle mesh that is compatible with RoadRunner
Scenario. To create a compatible custom vehicle mesh, follow these workflow steps.

Step Description
“Set Up Bone Hierarchy”
on page 2-9

In a 3D creation environment, set up the vehicle mesh bone hierarchy
and specify part names.

“Assign Materials” on
page 2-10 (Optional)

Optionally, assign materials to the vehicle parts.

“Export Mesh and
Armature” on page 2-11

Export the vehicle mesh and armature in the .fbx file format.

“Import Mesh to
RoadRunner Scenario” on
page 2-13

Import the vehicle mesh into the RoadRunner Scenario.

Note To create the mesh, this example uses the 3D creation software Blender® Version 2.80.

Set Up Bone Hierarchy
1 Import a vehicle mesh into a 3D modeling tool, such as Blender.
2 To ensure that this mesh is compatible with RoadRunner Scenario, the minimal bone hierarchy in

the mesh must include these vehicle parts using this naming convention.

Vehicle Part Name
Vehicle vehicle_name
Vehicle body body
Front left wheel wheel01
Front right wheel wheel02
Back left wheel wheel03
Back right wheel wheel04

3 Set the name of the top-level vehicle object to the expected vehicle type, such as Sedan. The top-
level vehicle object must be the parent of the other vehicle objects.

 Import Custom Vehicle Meshes

2-9

4 For two wheels on the same axle, such as wheel01 and wheel02, their transforms require that
any difference in Y-axis offsets be less than 0.01 m. Otherwise, the wheels are categorized into
different axles.

Assign Materials
You can optionally assign a material slot to the vehicle body. Applying a material containing the word
paint to a mesh under the body node enables you to modify the color of the mesh in the
RoadRunner Scenario Attributes pane. Because RoadRunner Scenario multiplies the color, you can
leave the material the default color of white.

Create and assign material slots to the vehicle body. Confirm that the first material slot corresponds
to the body object. For example, this image shows the hierarchy in Blender.

2 Import Scenario Data

2-10

Export Mesh and Armature
Export the mesh and armature to the .fbx file format. For example, in Blender:

1 In the Include section, for Object Types, select Armature and Mesh.

 Import Custom Vehicle Meshes

2-11

2 On the Transform section, set:

• Scale to 1.00
• Apply Scalings to All Local
• Forward to Y Forward
• Up to Z Up

Select Apply Unit and Use Space Transform.

3 On the Geometry section:

• Set Smoothing to Face
• Select Apply Modifiers

4 On the Armature section, set:

• Primary Bone Axis to Y Axis
• Secondary Bone Axis to X Axis

2 Import Scenario Data

2-12

5 Select Export FBX.

Import Mesh to RoadRunner Scenario
To import the new FBX model into RoadRunner Scenario, follow the instructions provided in “Create,
Import, and Modify Assets”. After the new vehicle has been imported, you must change the mesh to a
Vehicle type. In the asset browser, select the vehicle asset and right-click, select Default Type >
Vehicle.

Now you can use the new vehicle asset it in any RoadRunner Scenario simulations.

See Also
“Create, Import, and Modify Assets” | “Import Trajectories from ASAM OpenSCENARIO Files” on
page 2-2

 Import Custom Vehicle Meshes

2-13

Import Custom Character Meshes
This section shows the workflow to create and import a character mesh that is compatible with
RoadRunner Scenario. To create a compatible custom character mesh, follow these workflow steps.

Step Description
“Create Character Mesh”
on page 2-14

In a 3D creation environment, set up the character mesh bone hierarchy
and specify part names.

“Set Up Bone Hierarchy”
on page 2-15

Create a compatible bone hierarchy and rig to the character mesh.

“Create Idle, Walk, and
Run Animations” on page
2-17 (Optional)

Create idle, walk, and run animations of your character.

“Import Character into
RoadRunner Scenario” on
page 2-17

Import the character mesh, rig, and optional animations into
RoadRunner Scenario.

Create Character Mesh
Create a character mesh in the 3D creation software. To ensure that the character mesh can be
imported into RoadRunner Scenario, the character mesh must:

• Be in a T-pose, by default.
• Include a diffuse, normal, and specular texture map.
• Use proper edge flow with no broken edge seams.

This figure shows a sample of the default character mesh in 3D creation software.

2 Import Scenario Data

2-14

Set Up Bone Hierarchy
Using the character mesh developed in the previous section, create a character rig. To be usable in
RoadRunner Scenario, the bones in the character rig must follow the hierarchies in the tables shown.
The Hips_Male bone must be the root element of the hierarchy.

Supported values of side are L for left and R for right. For example, Hips_Male has children
Spine_Male, R_UpperLeg_Male, and L_UpperLeg_Male.

Supported values of finger are Thumb, Index, Middle, Ring, and Pinky. For example,
R_Hand_Male has five children: R_Thumb1_Male, R_Index1_Male, R_Middle1_Male,
R_Ring1_Male, and R_Pinky1_Male. Similarly, R_Thumb1_Male has child R_Thumb2_Male.

 Import Custom Character Meshes

2-15

Body Hierarchy

Name Parent Children
Hips_Male None Spine_Male

side_UpperLeg_Male
Spine_Male Hips_Male Spine1_Male
Spine1_Male Spine_Male Spine2_Male
Spine2_Male Spine1_Male Neck_Male

side_Shoulder_Male
Neck_Male Spine2_Male Neck_Male
Head_Male Head_Male None

Leg Hierarchy

Name Parent Children
side_UpperLeg_Male Hips_Male side_LowerLeg_Male
side_LowerLeg_Male side_UpperLeg_Male side_Foot_Male
side_Foot_Male side_LowerLeg_Male side_ToeBase_Male
side_ToeBase_Male side_Foot_Male None

Arm Hierarchy

Name Parent Children
side_Shoulder_Male Spine2_Male side_Arm_Male
side_Arm_Male side_Shoulder_Male side_Forearm_Male
side_Forearm_Male side_Arm_Male side_Hand_Male
side_Hand_Male side_Forearm_Male side_finger1_Male
side_finger1_Male side_Hand_Male side_finger2_Male
side_finger2_Male side_finger1_Male side_finger3_Male
side_finger3_Male side_finger2_Male side_finger4_Male
side_finger4_Male side_finger3_Male None

This image shows a sample of the rig for the Male_Citizen character compatible with RoadRunner
Scenario.

2 Import Scenario Data

2-16

Create Idle, Walk, and Run Animations
Using the character rig, you can generate animations in 3D creation software. A typical strategy for
creating an animation from a character rig is:

1 Create controllers for the rig for easier manipulation of the limbs without going through each
joint.

2 With the controllers, generate keyframes for the rig.
3 Using the keyframes, create the idle, walk, and run animations.

Note The animations can be made in different tools than the mesh and rig, but the rig hierarchy
must be the same to support import into RoadRunner Scenario.

Optionally, if you do not want to create animations, then you can use existing animations of the
Male_Citizen character asset because your mesh will share the same skeletal rig hierarchy. For
more information on rigging and animation in Blender, see https://docs.blender.org/manual/en/latest/
animation/introduction.html.

Import Character into RoadRunner Scenario
To import the new character model into RoadRunner Scenario, follow these steps.

 Import Custom Character Meshes

2-17

https://docs.blender.org/manual/en/latest/animation/introduction.html
https://docs.blender.org/manual/en/latest/animation/introduction.html

1 In RoadRunner Scenario, open the Asset Browser, open the Assets > Characters folder. Create
a new folder with the name of your new character.

2 In 3D creation software, export these objects to your new character folder:

• Character mesh and rig as an FBX file.
• Idle animation as an FBX file.
• Walking animation as an FBX file.
• Running animation as an FBX file.

3 In the Assets > Characters folder, create a new character by right-clicking in the Asset
Browser and selecting New > Character. Give the new character the same name as the new
character folder created earlier.

4 Assign the character mesh and rig FBX file to the Skin and Skeleton attributes.
5 Assign the idle, walking, and run FBX files to the Idle Animation, Walk Animation, and Run

Animation properties, respectively.
6 Click Apply Changes button. Your character display in the Asset Browser updates to mesh

provided.

Now you can use your new character asset in any RoadRunner Scenario simulation.

See Also
Character Assets

External Websites
• https://www.blender.org/
• https://docs.blender.org/manual/en/latest/animation/introduction.html
• https://www.autodesk.com/products/maya/overview

2 Import Scenario Data

2-18

https://www.blender.org/
https://docs.blender.org/manual/en/latest/animation/introduction.html
https://www.autodesk.com/products/maya/overview

Design and Simulate Scenarios

• “Design Lane Following Scenario” on page 3-2
• “Design Lane Change Scenario” on page 3-10
• “Design Lane Swerve Scenario” on page 3-20
• “Design Path Following Scenario” on page 3-28
• “Design Vehicle with Trailer Scenario” on page 3-39
• “Design Overtake Using Longitudinal Distance Condition Scenario” on page 3-44
• “Design Vehicle Following User-Defined Actions Scenario” on page 3-50
• “Design Vehicle Following User-Defined Events Scenario” on page 3-58
• “Switch Between Scene and Scenario Editing” on page 3-62
• “Path Editing” on page 3-66
• “Define Scenario Logic” on page 3-75
• “Scenario Anchoring System” on page 3-118
• “Lane and Actor Direction in Scenarios” on page 3-127
• “Relocate Scenarios” on page 3-134
• “Validate Scenarios” on page 3-140
• “Built-In Behavior for Vehicles” on page 3-145
• “Specify and Assign Actor Behaviors” on page 3-156
• “Camera Control in RoadRunner Scenario” on page 3-157

3

Design Lane Following Scenario
This example shows how to design a scenario in which a vehicle follows its lane and performs a speed
change action. In this example, you learn about the behavior of built-in vehicle actors and how to
define actions.

About the Scenario
This scenario contains two vehicles:

• A white sedan drives at a constant speed in one lane throughout the scenario.
• A red sedan drives in the adjacent lane and speeds up after 10 seconds.

Create New Scenario
Create a new scenario in one of the default RoadRunner scenes.

1 Open RoadRunner and, from the start page, select Open Scene. If you have RoadRunner open
already, then select Open Scene from the File menu instead.

2 Select the ScenarioBasic.rrscene scene from the current project. This scene is included with
RoadRunner projects by default.

This scene contains a four-way intersection with traffic signals, a roundabout, and several roads
of varying lengths and curve types.

3 Design and Simulate Scenarios

3-2

3 Switch to scenario editing mode. From the top-right corner of the RoadRunner application, select
Scene Editing, then Scenario Editing.

The scene is now locked, and you can begin populating the scenario.

Add Vehicles
Add the two vehicles to the scenario.

1 From the Library Browser, drag a Sedan asset into the scenario. Place the sedan in the left
lane, at the start of the left side of the divided highway and near the road anchor.

 Design Lane Following Scenario

3-3

The Logic editor now contains an initial action phase labeled Sedan. This phase initializes the
speed of the sedan to approximately 17.9 m/s.

2 Drag a second Sedan asset into the scenario. Place this sedan in the right lane, adjacent to the
original sedan.

The Logic editor now contains a parallel initial action phase labeled Sedan2. This sedan has the
same initial speed as the original sedan.

3 Design and Simulate Scenarios

3-4

3 Change the color of the new sedan to red to visually differentiate it from the original one. With
the new sedan still selected, in the Attributes pane, click the Color box and select the red color
patch. The scenario editing canvas displays the updated color.

4 (Optional) Align the two vehicles by their front bumpers so that they have the same starting
point. To set precise alignments, you can align the vehicles with the road anchor that they are
attached to.

a In the scenario editing canvas, select the white sedan.
b In the Attributes pane, set Reference Line to Front.
c Set Offset to 0 meters.

The front bumper of the white sedan is now aligned with the road anchor.

d Repeat these steps with the red sedan so that both sedan front bumpers are aligned with the
road anchor.

 Design Lane Following Scenario

3-5

5
Simulate the scenario so far by using the Simulation Tool . The two vehicles follow their
lanes and drive at the same speed.

6 Stop the simulation early by pressing Stop, and then switch back to the Scenario Edit Tool

. By default, the simulation ends either upon collision or after 60 seconds of simulation time.

Add Speed Change Action
Add an action phase in which the red sedan speeds up to 30 m/s.

1 In the Logic editor, right-click the Sedan2 initial phase and select Add Action Phase After.

The Logic editor adds a new Change Speed action phase. By default, this action phase is set to
the same speed as the initial action phase: 17.9 m/s.

2 With the new action still selected, from the Change Speed section of the Attributes pane, set
Speed to 30 m/s.

3 Design and Simulate Scenarios

3-6

3
Simulate the scenario so far by using the Simulation Tool . The red sedan now immediately
changes speeds and drives faster than the white sedan.

Add Speed Change Condition
Currently, the red sedan immediately changes speed after initialization. Set a condition that causes
the red sedan to change speeds only after 10 seconds have elapsed.

1 Select the condition node that is connected to the initial phase of the red sedan, Sedan2.

2 From the Attributes pane, select the Duration condition. The Logic editor displays the
selected condition.

3 In the Attributes pane, set Duration to 10 seconds.
4 Simulate the scenario. The sedans now drive at the same speed initially. Then, after 10 seconds,

the red sedan speeds up.

The Logic editor displays the active actions and conditions during simulation. Green actions and
conditions have been completed, orange ones are currently active, and gray ones (not shown in
this figure) are not active.

 Design Lane Following Scenario

3-7

Alternatively, instead of using a Duration condition, you can use the Simulation Time condition.

• The Duration condition becomes active as soon as the associated action phase starts.
• The Simulation Time condition becomes active as soon as the associated action phase starts,

and is satisfied once the specified simulation time is met.

In this scenario, since the associated action phase (the Initial Speed action) starts at the
beginning of simulation, the Duration and Simulation Time conditions are effectively the same.

Other Things to Try
To customize the scenario further, try modifying the speeds of the vehicles and observe the effects on
the simulation. Also, try specifying other action phases for the red sedan. For example, try changing
the Speed Change action phase to a Lane Change action phase, and observe how the simulation
changes. For an example of a lane change scenario, see “Design Lane Change Scenario” on page 3-
10.

Once you are satisfied with the scenario, you can export it to ASAM OpenSCENARIO. For more
details on exporting to ASAM OpenSCENARIO, see “Export Scenarios”.

You can also try generating variations of the scenario. For example, create a variable for the speed
change. Select the speed change action phase from the Logic editor and, in the Attributes pane,
right-click the Speed attribute and select Create Variable.

3 Design and Simulate Scenarios

3-8

The Variables table now displays a ChangeSpeed_TargetSpeed variable.

You can then programmatically change this variable and export the varied scenarios to ASAM
OpenSCENARIO. For more details on generating scenarios, see “Generate Scenario Variations Using
gRPC API” on page 4-2.

See Also

Related Examples
• “Design Lane Change Scenario” on page 3-10
• “Design Lane Swerve Scenario” on page 3-20
• “Design Path Following Scenario” on page 3-28

More About
• “Define Scenario Logic” on page 3-75

 Design Lane Following Scenario

3-9

Design Lane Change Scenario
This example shows how to design a scenario in which one vehicle changes into the same lane as
another vehicle. In this example, you learn how to set conditions and define parallel actions, where a
vehicle changes lanes and speeds simultaneously.

About the Scenario
This scenario contains two vehicles:

• The ego vehicle, a white sedan, drives at a constant speed in one lane throughout the scenario.
• The lead vehicle, a red sedan, cuts into the lane of the ego vehicle when the ego vehicle is within

30 meters of it.

By the time the lead vehicle completes its lane change, it is driving faster than the ego vehicle, so no
collision occurs.

This scenario is based on the ASAM OpenSCENARIO automated lane keeping systems (ALKS) test
scenario 4.4_1. For more details on ALKS scenarios, see the ALKS Scenario page on GitHub®.

Create New Scenario
Create a new scenario in one of the default RoadRunner scenes.

1 Open RoadRunner, and from the start page, select Open Scene. If you have RoadRunner open
already, then select Open Scene from the File menu instead.

2 Select the ScenarioBasic.rrscene scene from the current project. This scene is included with
RoadRunner projects by default.

This scene contains a four-way intersection with traffic signals, a roundabout, and several roads
of varying lengths and curve types.

3 Design and Simulate Scenarios

3-10

https://github.com/asam-oss/OSC-ALKS-scenarios

3 Switch to scenario editing mode. From the top-right corner of the RoadRunner application, select
Scene Editing, then Scenario Editing.

The scene is now locked, and you can begin populating the scenario.

Add Ego Vehicle
Add the ego vehicle to the scenario. This vehicle drives at a constant speed and stays in the same lane
throughout the scenario.

1 From the Library Browser, drag a Sedan asset into the scenario. Place the sedan in the left
lane, at the start of the left side of the divided highway.

 Design Lane Change Scenario

3-11

2 Rename the vehicle. With the sedan still selected, in the Attributes pane, set Name to Ego.

The Logic editor now contains an initial action phase labeled Ego. This phase initializes the speed of
the ego vehicle to 17.9 m/s. Because the sedan has no driving path defined, the sedan drives in its
current lane at the set speed by default.

The scenario is set to end after 60 seconds of simulation time or upon the first collision. Leave the
default end condition.

Add Lead Vehicle
Add the lead vehicle to the scenario.

1 From the Library Browser, drag another Sedan asset into the scenario. Place the new sedan in
the lane adjacent to the original sedan and several car lengths in front of it.

2 Rename the lead vehicle. With the vehicle still selected, in the Attributes pane, set Name to
Lead Vehicle.

3 Design and Simulate Scenarios

3-12

3 Change the color of the lead vehicle to visually differentiate it from the ego vehicle. Click the
Color attribute box and select the red color patch. In the scenario editing canvas, the lead
vehicle is now red.

4 Set the initial speed of the lead vehicle to be slower than the ego vehicle. In the Logic editor,
select the initial action phase for the lead vehicle. Then, in the Attributes pane, in the
Initialize Speed action, set Speed to 10 m/s.

5
Simulate the scenario. From the RoadRunner Scenario toolbar, select the Simulation Tool .
Then, in the Simulation pane, click Play.

The ego vehicle and lead vehicle follow their lanes, and the ego vehicle eventually overtakes the
lead vehicle.

 Design Lane Change Scenario

3-13

6 Stop the simulation early by pressing Stop, and then switch back to the Scenario Edit Tool

.

Add Lane Change Action
Specify a lane change action in which the lead vehicle cuts into the lane of the ego vehicle over a
distance of 20 meters.

1 Right-click the Lead Vehicle initial phase and select Add Action Phase After. By default,
RoadRunner Scenario sets action phases added after Initial Speed actions to Change Speed
actions.

2 In the Attributes pane, set Action Type to Change Lane. The Logic editor displays the updates
to the action phase.

3 In the Change Lane section of the Attributes pane, specify these lane change attributes, in this
order:

a Set Relative to to Actor.

3 Design and Simulate Scenarios

3-14

b Click the Reference Actor box and select the ego vehicle from either the scenario editing
canvas or the Logic editor. These areas of the RoadRunner layout are outlined by blue lines.

c Set Direction to Same Lane.
d Set Distance to 20 meters.

4
Simulate the scenario so far by using the Simulation Tool . The lead vehicle now
immediately changes lanes, but the ego vehicle then collides with the slower lead vehicle.

 Design Lane Change Scenario

3-15

Add Parallel Speed Change Action
To prevent a collision, specify a speed change action that occurs in parallel with the lane change
action. In this example, the lead vehicle speeds up to 20 m/s.

1 In the Logic editor, right-click the lane change action phase and select Add Action Phase
Below. The Logic editor adds an unset parallel action phase below the lane change action phase.

2 In the Attributes pane, set Action Type to Change Speed.
3 In the Change Speed section, set Speed to 20 m/s. The Logic editor displays the speed change

update in the action phase.

3 Design and Simulate Scenarios

3-16

4 Simulate the scenario so far. Because the lead vehicle speeds up while performing the lane
change, the scenario no longer ends in collision.

Set Lane Change Condition
Instead of having the lead vehicle change lanes as soon as the simulation starts, set a condition that
triggers the lane change. In this example, the lead vehicle begins its maneuver when it is less than 20
meters from the ego vehicle.

1 Select the condition node connected to the initial phase of the lead vehicle.

2 From the Attributes pane, select the Distance to Actor condition. The Logic editor displays
the selected condition.

 Design Lane Change Scenario

3-17

3 In the Attributes pane, click the Reference Actor attribute box. Then, select the ego vehicle
either from the scenario editing canvas or the Logic editor.

4 Set Threshold to 20 meters. The scenario editing canvas displays a dashed line between the ego
vehicle and lead vehicle. The blue arrow within this line is 20 meters from the lead vehicle. When
the ego vehicle reaches this arrow, the lead vehicle meets its Distance to Actor condition.

5 Simulate the scenario. The lead vehicle now does not start its lane change until the ego vehicle is
closer. Depending on your initial placement of the vehicles, this scenario can end in collision.

Other Things to Try
To customize the scenario further, try modifying the location and speeds of the vehicles and observe
the effects on the simulation.

Once you are satisfied with the scenario, you can export it to ASAM OpenSCENARIO. For more
details on exporting to ASAM OpenSCENARIO, see “Export Scenarios”.

3 Design and Simulate Scenarios

3-18

You can also try generating variations of the scenario. For example, create a variable for the distance
at which the lead vehicle begins its cut-in. Select the condition node for the lead vehicle and, in the
Attributes pane, right-click the Threshold attribute and select Create Variable.

The Variables table now displays a DistanceToActor_Threshold variable.

You can then programmatically change this variable and export the generated variations of scenarios
to ASAM OpenSCENARIO. For more details on varying scenarios, see “Generate Scenario Variations
Using gRPC API” on page 4-2.

See Also

Related Examples
• “Design Lane Following Scenario” on page 3-2
• “Design Lane Swerve Scenario” on page 3-20
• “Design Path Following Scenario” on page 3-28

More About
• “Define Scenario Logic” on page 3-75

 Design Lane Change Scenario

3-19

Design Lane Swerve Scenario
This example shows how to design a scenario in which one vehicle swerves from side-to-side within
its lane. In this example, you learn how to use lateral offset actions, and how to define scenarios in
which vehicles do not follow a predefined path.

About the Scenario
This scenario contains two vehicles:

• The ego vehicle, a white sedan, drives at a constant speed in one lane throughout the scenario.
• The lead vehicle, a red sedan, drives at a constant speed in front of the ego vehicle, but swerves to

the left and right within its lane during simulation.

This scenario is based on the ASAM OpenSCENARIO automated lane keeping systems (ALKS) test
scenario 4.1_2. For more details on ALKS scenarios, see the ALKS Scenario page on GitHub.

Create New Scenario
Create a new scenario in one of the default RoadRunner scenes.

1 Open RoadRunner and, from the start page, select Open Scene. If you have RoadRunner open
already, then select Open Scene from the File menu instead.

2 Select the ScenarioBasic.rrscene scene from the current project. This scene is included with
RoadRunner projects by default.

This scene contains a four-way intersection with traffic signals, a roundabout, and several roads
of varying lengths and curve types.

3 Design and Simulate Scenarios

3-20

https://github.com/asam-oss/OSC-ALKS-scenarios

3 Switch to scenario editing mode. From the top-right corner of the RoadRunner application, select
Scene Editing, then Scenario Editing.

The scene is now locked, and you can begin creating the scenario.

Add Ego Vehicle
Add the ego vehicle to the scenario. This vehicle drives at a constant speed and stays in the same lane
throughout the scenario.

1 From the Library Browser, drag a Sedan asset into the scenario. Place the sedan in the left
lane, at the start of the left side of the divided highway.

 Design Lane Swerve Scenario

3-21

2 Rename the vehicle. With the sedan still selected, in the Attributes pane, set Name to Ego.

The Logic editor now contains an initial action phase labeled Ego. This phase initializes the speed of
the ego vehicle to approximately 17.9 m/s. Because the sedan has no driving path defined by default,
the sedan drives in its current lane at the set speed.

The scenario, by default, ends after 60 seconds of simulation time or upon the first collision. Leave
the default end condition.

Add Lead Vehicle
Add the lead vehicle to the scenario.

1 From the Library Browser, drag a second Sedan asset into the scenario. Place the new sedan in
the same lane as the original sedan and slightly in front of it.

2 Rename the lead vehicle. With the vehicle still selected, in the Attributes pane, set Name to
Lead Vehicle.

3 Change the color of the lead vehicle to visually differentiate it from the ego vehicle. Click the
Color attribute box and select the red color patch. In the scenario editing canvas, the lead
vehicle is now red.

3 Design and Simulate Scenarios

3-22

4 Simulate the scenario so far. From the RoadRunner Scenario toolbar, select the Simulation Tool

. Then, in the Simulation pane, click Play.

The ego vehicle and lead vehicle follow their lane and drive at their default speed of 17.9 m/s.

5 Stop the simulation early by pressing Stop, and then switch back to the Scenario Edit Tool

. By default, the simulation ends either upon collision or after 60 seconds of simulation time.

Add Lane Swerve Actions
Specify the actions that cause the vehicle to swerve left, straighten back to center, swerve right, and
straighten back to center again.

To cause the lead vehicle to swerve left and right, specify the lateral distance, in meters, to offset the
vehicle from its lane center. In this example, specify offsets of 1.5 meters to the left and right of the
vehicle. At these distances, the vehicle center roughly aligns with the left and right edges of the lane.
Lateral coordinates are positive to the right of the vehicle. Therefore, to swerve left, specify -1.5
meters. To swerve right, specify 1.5 meters of lateral offset.

1 Right-click the Lead Vehicle initial phase and select Add Action Phase After. By default,
RoadRunner Scenario sets action phases added after Initial Speed actions to Change Speed
actions.

 Design Lane Swerve Scenario

3-23

2 Specify the action in which the lead vehicle swerves left. In the Attributes pane, set Action
Type to Change Lateral Offset. The Logic editor displays the updates to the action phase.

3 In the Attributes pane, set the Lateral Offset attribute to -1.5 m. The Logic editor displays the
updated lateral offset value.

Set the Time attribute to 2 so that the swerve to the left occurs over the course of 2 seconds.
4 Add three additional lateral offset actions after the first lateral offset action by right-clicking the

action and selecting Add Action Phase After. The added action phases inherit their values from
the first action phase.

5 Select each lateral offset action phase and set the Lateral Offset attributes to the values shown
in the table.

Action Phase Lateral Offset Attribute
Value

Vehicle Action

First lateral offset action -1.5 (already set) Swerve left
Second lateral offset action 0 Straighten back to center
Third lateral offset action 1.5 Swerve right

3 Design and Simulate Scenarios

3-24

Action Phase Lateral Offset Attribute
Value

Vehicle Action

Fourth lateral offset action 0 Straighten back to center

The Logic editor displays the updated values.

Each action occurs over the course of 2 seconds, because the added actions inherit the Time
value of 2 from the first lateral offset action.

6
Simulate the scenario so far by using the Simulation Tool . The lead vehicle swerves to the
left, but because the logic has no conditions to trigger the subsequent actions, the vehicle does
not perform the subsequent lateral offset actions

Add Lane Swerve Conditions
Set the conditions that trigger the subsequent lateral offset actions that the lead vehicle performs. In
this example, have the lead vehicle proceed to each action after 5 seconds.

1 Click the condition node that is connected to the first lateral offset action (swerve left action) to
select it.

2 From the Attributes pane, select the Duration condition. The Logic editor displays the
selected condition.

 Design Lane Swerve Scenario

3-25

Leave the Duration attribute value set to the default of 5 seconds.
3 Add identical Duration conditions of 5 seconds to each of the subsequent lateral offset actions.

The Logic editor displays the added conditions.

4 Simulate the scenario. The lead vehicle now switches between actions in five-second intervals.

When the lead vehicle reaches the final lateral offset action (straighten back to center), it
maintains this action, even after the duration condition is met.

Other Things to Try
To customize the scenario further, try modifying various attributes of the scenario logic, such as:

3 Design and Simulate Scenarios

3-26

• The Lateral Offset values.
• The Time values over which the lateral offset actions occur.
• The Duration values between each lateral offset action.

Once you are satisfied with the scenario, you can export it to ASAM OpenSCENARIO and visualize the
scenario in a simulation viewer such as esmini. For more details on exporting to ASAM
OpenSCENARIO, see “Export Scenarios”.

You can also try generating variations of the scenario. For example, create a variable for the first
lateral offset value. First, in the Logic Editor, select the first lateral offset action for the lead vehicle.
Then, in the Attributes pane, right-click the Lateral Offset attribute and select Create Variable.

The Variables table now displays a ChangeLateralOffset_LateralOffsetValue variable.

You can then programmatically change this variable and export the varied scenarios to ASAM
OpenSCENARIO. For more details on generating various scenarios, see “Generate Scenario Variations
Using gRPC API” on page 4-2.

See Also

Related Examples
• “Design Lane Following Scenario” on page 3-2
• “Design Lane Change Scenario” on page 3-10
• “Design Path Following Scenario” on page 3-28

More About
• “Define Scenario Logic” on page 3-75

 Design Lane Swerve Scenario

3-27

Design Path Following Scenario
This example shows how to design a scenario in which a vehicle follows a predefined driving path
that goes on- and off-road. By specifying explicit driving paths, you can create more complex and
unique scenarios.

About the Scenario
This scenario contains one vehicle, a white sedan. In the scenario, the vehicle starts on the road,
slows down as it drives off the road, and then speeds up as it drives back onto the road.

Create New Scenario
Create a new scenario in one of the default RoadRunner scenes.

1 Open RoadRunner and, from the start page, select Open Scene. If you have RoadRunner open
already, then select Open Scene from the File menu instead.

2 Select the ScenarioBasic.rrscene scene from the current project. This scene is included with
RoadRunner projects by default.

This scene contains a four-way intersection with traffic signals, a roundabout, and several roads
of varying lengths and curve types.

3 Design and Simulate Scenarios

3-28

3 Switch to scenario editing mode. From the top-right corner of the RoadRunner application, select
Scene Editing, then Scenario Editing.

The scene is now locked, and you can begin populating the scenario.

Add Vehicle
Add the vehicle to the scenario.

1 From the Library Browser, drag a Sedan asset into the scenario. Place the sedan in the left
lane, at the start of the right side of the divided highway.

 Design Path Following Scenario

3-29

The Logic editor now contains an initial action phase labeled Sedan. This phase initializes the
speed of the sedan to approximately 17.9 m/s.

2
Simulate the scenario so far by using the Simulation Tool . With no path specified, the
sedan drives in its lane at its initial speed.

3 Stop the simulation early by pressing Stop, and then switch back to the Scenario Edit Tool

. By default, the simulation ends either upon collision or after 60 seconds of simulation time.

Add On-Road Path Segment
Add an explicit driving path for the vehicle to follow. For this first path segment, the vehicle changes
lanes and drives straight in its new lane. In future path segments, the vehicle drives off the road.

3 Design and Simulate Scenarios

3-30

1 In the scenario editing canvas, click the sedan to select it.

2 Add a path segment by right-clicking the adjacent lane slightly in front of the ego vehicle.
RoadRunner adds a new path waypoint, selected in yellow, at the point where you clicked. The
purple path segment snaps to the center of the lane and includes a lane change maneuver.

The Logic editor now shows that the vehicle drives along a predefined path instead of along its
lane.

3 Drag the selected waypoint until just before the turning lanes form. This is the point at which you
want the vehicle to go off the road.

4
Simulate the scenario by using the Simulation Tool button. The sedan changes lanes and
drives until it reaches the specified waypoint. The simulation continues until 60 seconds of
simulation time elapse, or until you stop the scenario early.

 Design Path Following Scenario

3-31

Add Off-Road Path Segment
Add free-form, off-road path segments to the end of the driving path. In this scenario, the vehicles
cuts through the ground terrain to avoid the intersection.

1 In the scenario editing canvas, click the driving path to select it.

2 Add a new waypoint to the path by right-clicking the southbound lane, below the intersection. By
default, this path continues to follow the road network. The vehicle now merges into the turning
lane, turns right, and then follows the road south.

3 Convert the added path segment to an off-road path. Select the path segment and, in the
Attributes pane, select Route Segment Parameters > Freeform.

The path segment no longer follows the road network and does not turn at the intersection.
Instead, the path follows a curve based on the specified Curve Type.

3 Design and Simulate Scenarios

3-32

4 Simulate the scenario to view the sedan traveling off the road along the curved path.

Refine Off-Road Path Segment
Modify the off-road path segment to introduce more complex maneuvers.

1 Split the off-road path segment into two segments. First, click the path, and then click the off-
road path segment to select it. Then, right-click the center of the path segment to add a waypoint
and split the segment. The split segments inherit the attributes of the original segment and
ignore the road network.

 Design Path Following Scenario

3-33

2 Click and drag the off-road path waypoint to form a more complex off-road path.

3 Optionally refine the path further by modifying the tangent of the waypoint. For example, try
rotating or extending the tangent lines.

3 Design and Simulate Scenarios

3-34

4 Simulate the scenario to view the sedan traveling the more complex off-road path.

Add Speed Change Along Path
Currently, the vehicle drives at a constant speed along the entire path. To make the scenario more
realistic, slow the vehicle down while it drives off the road.

Add Speed Change Action

Add a speed change action and decrease the speed of the sedan to 10 m/s.

1 In the Logic editor, right-click the Sedan initial phase and select Add Action Phase After.

The Logic editor adds a new speed change action phase. By default, this action phase is set to
the same speed as the initial action phase: 17.9 m/s.

2 With the new action still selected, from the Change Speed section of the Attributes pane, set
Speed to 10 m/s. The Logic editor displays this change in speed.

Set Speed Change Condition

Set the condition that triggers the decrease in speed. In this example, the speed change occurs when
the vehicle begins the off-road segment of its path.

1 Select the condition node that is connected to the initial action phase of the sedan.

 Design Path Following Scenario

3-35

2 From the Attributes pane, select the Distance to Point condition. The Logic editor displays
the selected condition.

3 In the Attributes pane, click the Point attribute box. RoadRunner outlines the Logic editor and
scenario editing canvas with blue lines, indicating that you can select an object from either
section. Then, in the scenario editing canvas, select the path and then the waypoint immediately
before the vehicle drives off the road.

The scenario editing canvas displays the added distance-to-point condition in blue. A dotted blue
line extends from the sedan to this point.

4 Simulate the scenario. The sedan now slows down to 10 m/s as soon as it begins to drive off the
road.

3 Design and Simulate Scenarios

3-36

The Logic editor displays the active actions and conditions during simulation. Green actions and
conditions have been completed, orange ones are currently active, and gray ones (not shown in
this figure) are not active.

Other Things to Try
To customize the scenario further, try modifying the vehicle path for other path following scenarios.

Once you are satisfied with the scenario, you can export it to ASAM OpenSCENARIO. For more
details on exporting to ASAM OpenSCENARIO, see “Export Scenarios”.

You can also try generating variations of the scenario. For example, create a variable for the speed
change. Select the speed change action phase from the Logic editor and, in the Attributes pane,
right-click the Speed attribute and select Create Variable.

The Variables table now displays a ChangeSpeed_TargetSpeed variable.

 Design Path Following Scenario

3-37

You can then programmatically change this variable and export the varied scenarios to ASAM
OpenSCENARIO. For more details on generating various scenarios, see “Generate Scenario Variations
Using gRPC API” on page 4-2.

See Also

Related Examples
• “Design Lane Following Scenario” on page 3-2
• “Design Lane Change Scenario” on page 3-10
• “Design Lane Swerve Scenario” on page 3-20

More About
• “Define Scenario Logic” on page 3-75
• “Path Editing” on page 3-66

3 Design and Simulate Scenarios

3-38

Design Vehicle with Trailer Scenario

Add Vehicle with Trailer to Scene
To add a vehicle with a trailer to a scenario, follow these steps.

Note The vehicle images shown in this example are from the RoadRunner Asset Library. For more
information on the RoadRunner Asset Library, see RoadRunner Asset Library product page.

1 From the Library Browser, drag a parent vehicle into the scene. This image shows the
SemiTruck vehicle asset placed into the scene.

2 From the Library Browser, drag a trailer onto the lead vehicle in the scene. RoadRunner
Scenario automatically assigns the trailer as the child vehicle to the lead vehicle, which becomes
the parent vehicle. This image shows the SemiTruck vehicle asset with the
SemiTruck_Trailer1 vehicle asset attached as a child.

Note You can also assign the parent vehicle by using the Parent Attachment attribute in the
Vehicle-Connection Attributes section of the Attributes pane of the trailer.

 Design Vehicle with Trailer Scenario

3-39

https://www.mathworks.com/products/roadrunner-asset-library.html

3 You can adjust the position of the trailer, relative to attachment point on the parent vehicle, by
using the Parent Attachment Point attributes of the trailer. This image shows the Forward offset
attribute of the trailer set to 1.00 m.

Trailers in Simulation
The trailer or child vehicle attached to a parent vehicle can behave in one of two ways: fixed to the
parent vehicle, or dynamically attached to the parent vehicle through a hitch. In the trailer vehicle
attributes, set Connection Attributes > Type to trailer, this animation shows a sample truck with
a trailer turning a corner, with the trailer moving dynamically relative to the truck.

3 Design and Simulate Scenarios

3-40

In the trailer vehicle attributes, set Connection Attributes > Type to fixed, this animation shows a
sample truck with a trailer turning a corner with the trailer fixed to the truck.

 Design Vehicle with Trailer Scenario

3-41

Multi-Vehicle Trailers
A trailer can also act as a parent for another trailer. You can combine multiple vehicles as trailers to
create more advanced vehicles in a scene, such as multi-trailer trucks or trailers with cars on the
trailer deck. This image shows a sample of attached Truck and SemiTruck_Trailer01 vehicle
assets with the Sedan vehicle attached as a fixed child to the SemiTruck_Trailer01 asset.

3 Design and Simulate Scenarios

3-42

See Also
Vehicle Assets

 Design Vehicle with Trailer Scenario

3-43

Design Overtake Using Longitudinal Distance Condition
Scenario

This example shows how to use a longitudinal distance condition to allow one vehicle to overtake
another vehicle. You also learn how you can use the longitudinal distance action to build a scenario.

About the Scenario
This scenario contains two vehicles:

• The reference vehicle, a red sedan, which drives in one lane throughout the scenario.
• The ego vehicle, a white sedan, which overtakes the reference vehicle. After the overtake, the ego

and reference vehicle maintain a constant longitudinal distance gap.

Create New Scenario
Create a new scenario in one of the default RoadRunner scenes.

1 Open RoadRunner and from the start page, select Open Scene. If you have RoadRunner open
already, then select Open Scene from the File menu instead.

2 Select the ScenarioBasic.rrscene scene from the current project. This scene is included with
RoadRunner projects by default.

This scene contains a four-way intersection with traffic signals, a roundabout, and several roads
of varying lengths and curve types.

3 Design and Simulate Scenarios

3-44

3 Switch to scenario editing mode. From the top-right corner of the RoadRunner application, select
Scene Editing, then Scenario Editing.

The scene is now locked, and you can begin creating the scenario.

Add Reference Vehicle
Add a red sedan to the scenario as the reference vehicle. This vehicle stays in the same lane
throughout the scenario.

1 From the Library Browser, drag a Sedan asset into the scenario. Place the sedan on the
multilane road, in any lane except the extreme left and right lanes.

2 Rename the vehicle. With the sedan still selected, set Name to Reference in the Attributes
pane.

3 Change the color of the reference vehicle to visually differentiate it from the ego. Click the Color
attribute box and select the red color patch. In the scenario editing canvas, the reference vehicle
is now red.

 Design Overtake Using Longitudinal Distance Condition Scenario

3-45

The Logic editor now contains an initial action phase labeled Reference. This phase initializes the
speed of the reference vehicle to approximately 17.9 m/s. Since the sedan has no driving path defined
by default, it drives in the current lane at the set speed.

The scenario, by default, ends after 60 seconds of simulation time or upon the first collision.

Add Ego Vehicle
Add a white sedan as the ego vehicle to the scenario.

1 From the Library Browser, drag a second Sedan asset into the scenario. Place the new sedan in
the same lane as the original sedan and slightly behind it.

2 Rename the ego vehicle. With the vehicle still selected, in the Attributes pane, set Name to Ego.
3

Simulate the scenario. From the RoadRunner Scenario toolbar, select the Simulation Tool .
Then, in the Simulation pane, click Play.

The ego vehicle and lead vehicle follow their lane and drive at their default speed of 17.9 m/s.
4 Stop the simulation early by pressing Stop, and then switch back to the Scenario Edit Tool

.

Add Lane Change Action
To complete an overtake on the reference vehicle, the ego must first move to a different lane before
speeding up and overtaking the reference vehicle.

Specify a lane change action that causes the ego vehicle to change lanes to prepare for the overtake
on the reference vehicle.

1 Right-click the Ego initial phase and select Add Action Phase After.
2 Specify the action by which the ego vehicle moves to the lane right of the reference vehicle: in

the Attributes pane, set Action Type to Change Lane. Enter a suitable Name for the action
phase such as Lane_Change_Before_Overtake. The Logic editor displays the updates to the
action phase.

3 Select Current Lane from the Relative to list to set up the lane change action of the ego
vehicle relative to the current lane.

4 Set Direction to To the right, and Lane Offset to 1 lane(s) to enable the ego vehicle to
move to the right by one lane before initiating the overtake.

5 In the Dynamics section, set Dynamics Type to Over time. Set Time to 0.5 s to indicate the
time that the ego takes to complete the lane change action. Set Dynamics Profile to Linear.

6 The Logic editor displays the updated values. Simulate the scenario by using the Simulation

Tool . The ego moves to its right by one lane over a time period of 0.5 seconds.

3 Design and Simulate Scenarios

3-46

The simulation continues playing, with the ego vehicle moving forward in the lane right of the
reference vehicle at the speed of 17.88 m/s.

Accelerate Ego to Complete Overtake on Reference Vehicle
Create a new action phase that accelerates the ego vehicle so that it can build speed to overtake the
reference vehicle. The overtake occurs on the lane right of the reference vehicle.

1 Right-click the previous action phase Lane_Change_Before_Overtake, and select Add Action
Phase After. Select an appropriate Name such as Complete_Overtake for the newly created
action phase.

2 To accelerate the ego vehicle, set the Action Type to Change Speed. Set the Actor to Ego.
3 In the Change Speed section, set Relative To to Absolute. Set the new Speed to a greater

value, such as 35 m/s to enable the ego to speed up and overtake the reference vehicle.
4

Simulate the scenario by using the Simulation Tool . After moving to the right, the speed of
the ego vehicle increases. The ego passes the reference vehicle, thereby completing the overtake
action.

Use Longitudinal Distance Condition to Determine Return of Ego to
Original Lane
Once the ego vehicle completes the overtake, the longitudinal distance condition enables you to
decide the distance threshold to the reference vehicle at which the ego moves back to its original
lane in front of the red sedan.

 Design Overtake Using Longitudinal Distance Condition Scenario

3-47

1 Click the small circle at the end of the previous action phase Complete_Overtake to create a
new condition. In the Attributes pane, under Add Condition, select Longitudinal Distance
to Actor.

2 Set Relative Position to Ahead of, and select Reference as the actor from which the relative
position is calculated. The Rule and Threshold values together determine the distance threshold
at which the condition is considered satisfied. For example, if you set Rule and Threshold to
Greater than and 3.00 m, respectively, then Ego satisfies this condition when its longitudinal
distance gap to the reference actor is greater than 3.00 m ahead of Reference.

Return Ego to Original Lane
Create a new action phase that moves the ego vehicle to the original lane after the overtake is
complete.

1 Right-click the previous action phase Complete_Overtake, and select Add Action Phase
After. Select an appropriate Name such as Change_Lane_Back for the newly created action
phase. Note that the simulation reaches this action phase only after the longitudinal distance
condition is satisfied following the overtake.

2 Set the Action Type to Change Lane. Select the Actor for which this action type is applicable
as Ego.

3 In the Change Lane section, program Ego to move one lane to the left relative to the current
lane in a linear manner, over a time period of one second:

• Set Relative To to Current Lane.
• Set Direction to To the left.
• Set Lane Offset to 1 lane(s).
• In the Dynamics section, set Dynamics Type to Over time.
• Set Time to 1.00 s.
• Set Dynamics Profile to Linear.

4
Simulate the scenario by using the Simulation Tool . When the Longitudinal Distance
to Actor condition is satisfied, the ego moves back to its original lane ahead of the red sedan
using the specified dynamics.

Maintain Constant Longitudinal Distance Between Ego and Reference
Vehicle
Create a new action phase that closes the gap between the ego and reference vehicle after the
overtake, and maintains a constant longitudinal distance between both vehicles.

1 Right-click the previous action phase Change_Lane_Back, and select Add Action Phase After.
Select an appropriate Name such as Maintain_Long_Distance for the newly created action
phase.

2 Set the Action Type to Change Longitudinal Distance. Set the Actor to Ego.
3 In the Change Longitudinal Distance section, configure the ego vehicle to stay at a constant

longitudinal distance of 8.00 m in front of the reference vehicle:

3 Design and Simulate Scenarios

3-48

• Set Relative Position to Ahead of.
• Set Reference Actor to Reference.
• Set the Distance Type to Space.
• Set the Space Distance Offset to 8.00 m.

4 Set Measure From to Bounding Boxes if you want the longitudinal distance to be measured
between the edges of the bounding boxes of the ego and the reference vehicle. Select Origins
instead if you want the longitudinal distance to be measured between the origins of the ego and
the reference vehicle.

5 Set Sampling Mode to At start of action if you want the target longitudinal distance gap
to be achieved in the current action phase itself. Select Continuous if the target longitudinal
distance gap can also be achieved outside the current action phase.

6 In the Dynamic Constraints section, set Constraint Type to Asset Constraints. The ego
vehicle must follow the constraints included in its own list of attributes.

7
Simulate the scenario by using the Simulation Tool . After the overtake is complete, a
constant longitudinal distance is maintained between Ego and Reference.

See Also

Related Examples
• “Design Lane Following Scenario” on page 3-2
• “Design Lane Change Scenario” on page 3-10
• “Design Path Following Scenario” on page 3-28

More About
• “Define Scenario Logic” on page 3-75

 Design Overtake Using Longitudinal Distance Condition Scenario

3-49

Design Vehicle Following User-Defined Actions Scenario
You can use either MATLAB or Simulink to modify actor behavior by applying user-defined actions
created in RoadRunner Scenario.

The example workflows on this page assume that:

• You have a RoadRunner license and the product is installed.
• You have a RoadRunner Scenario license and the product is installed.

Model Vehicle Behavior Using User-Defined Actions in MATLAB

You can design a scenario in which a vehicle's behavior is modified in MATLAB by a user-defined
action created in RoadRunner Scenario.

The custom parameters of the user-defined action are dispatched from RoadRunner Scenario to actor
behavior models in cosimulation clients like MATLAB. Here, you can use the custom parameters to
modify base actor parameters like pose or velocity, thereby controlling the overall movement of a
vehicle.

This example shows how custom parameters (such as Steering Angle) of a user-defined action are
used to modify actor behavior.

You also learn how to create an actor behavior model in MATLAB that can receive and use this user-
defined action to modify actor behavior in a meaningful way. For instance, the Steering Angle
custom parameter can be programmed to control the angle of movement of a vehicle.

Set Up MATLAB-RoadRunner Scenario Cosimulation Environment

In the MATLAB command prompt, specify the path to your local RoadRunner installation folder. This
code snippet uses the default installation path of the RoadRunner application on Windows.

RRInstallationFolder = "C:\Program Files\RoadRunner R2022b\bin\win64";

To update the path for the RoadRunner installation folder, get the root object within the settings
hierarchical tree. Then, use the root object to set the installation path of the RoadRunner application.
For more information, see SettingsGroup (MATLAB).

s = settings;
s.roadrunner.application.InstallationFolder.PersonalValue = RRInstallationFolder;

This code snippet shows the path to a sample project folder on Windows that contains the default
RoadRunner directory structure.

3 Design and Simulate Scenarios

3-50

If required, change the path to reflect the RoadRunner project path on your machine.

rrProjectLocation = "C:\RR\MyProjects";

Create and open the roadrunner object that represents the specified project.

rrApp = roadrunner(rrProjectLocation, "InstallationFolder", RRInstallationFolder);

Add these files to the appropriate folders within your RoadRunner project.

• ScenarioBasic_MATLAB_UDA.rrscene — Scene file for the MATLAB-RoadRunner cosimulation
example.

• SimpleUDA_ML.rrscenario — Scenario file based on ScenarioBasic_MATLAB_UDA.rrscene.
• CustomDriverAction.rraction.rrmeta — Action asset file that contains the list of custom

parameters of a user-defined action with associated values. Here, the name of the user-defined
action is CustomDrive. The initial values of custom parameters Steering Angle and
ThrottleLevel are 0 and 30, respectively. This file is required for scenario simulation by both
MATLAB and Simulink. For more information about creating an action asset file, see “User-
Defined Actions” on page 3-96.

• hUDA_ML.m — MATLAB System object file that processes the user-defined actions.
• UDA_VB.rrbehavior.rrmeta — Behavior asset file that links the MATLAB System object

behavior to the vehicle in the scenario.

copyfile("ScenarioBasic_MATLAB_UDA.rrscene",fullfile(rrProjectLocation,"Scenes"));
copyfile("SimpleUDA_ML.rrscenario",fullfile(rrProjectLocation,"Scenarios"));
copyfile("CustomDriverAction.rraction.rrmeta",fullfile(rrProjectLocation,"Assets","Actions"));
copyfile("hUDA_ML.m",fullfile(rrProjectLocation,"Assets","Behaviors"));
copyfile("UDA_VB.rrbehavior.rrmeta",fullfile(rrProjectLocation,"Assets","Behaviors"));

Explore Scenario

Open the scene ScenarioBasic_MATLAB_UDA.rrscene for the MATLAB-RoadRunner Scenario
cosimulation example.

openScene(rrApp, "ScenarioBasic_MATLAB_UDA");

Open the scenario file SimpleUDA_ML.rrscenario.

openScenario(rrApp,"SimpleUDA_ML");

The scenario contains a red ambulance stationary in a lane.

 Design Vehicle Following User-Defined Actions Scenario

3-51

Visualize the scenario logic in the Logic editor pane. For more information, see “Define Scenario
Logic” on page 3-75.

The ambulance moves at an initial absolute speed of 17.88 m/s.

In the second action phase, the value of custom parameter Throttle Level is increased from 30 to 60.

In the final action phase, the custom parameter Steering Angle of the red ambulance is increased
from 0 to 20.

Now, navigate to Assets > Behaviors in the Library Browser.

Click the behavior file named UDA_VB.rrbehavior. In the Attributes pane on the right, note that
the Platform is set to MATLAB/Simulink. The MATLAB actor behavior file name hUDA_ML.m is
present in the File Name text box. For more information about modeling actor behavior in MATLAB
using user-defined actions, see “Actor Behavior Using User-Defined Actions” (Automated Driving
Toolbox).

3 Design and Simulate Scenarios

3-52

Click on the red ambulance in the Scenario Edit Tool. In the Attributes pane, note that the behavior
asset file UDA_VB.rrbehavior.rrmeta is linked to the red ambulance.

Connect to the RoadRunner Scenario server to enable cosimulation by using the createSimulation
function.

ss = rrApp.createSimulation();

Simulate Scenario

Play the scenario.

ss.set("SimulationCommand", "Start");

When the scenario is played, the actor behavior programmed in hUDA_ML.m is implemented.

The ambulance veers to its right and crosses the road limits onto the grassy surface. Then, it moves
left as the Steering Angle is increased to 20.

 Design Vehicle Following User-Defined Actions Scenario

3-53

Model Vehicle Behavior Using User-Defined Actions in Simulink

This example shows how to set Simulink up to process user-defined actions, and modify the
movement of an actor accordingly.

Set Up Simulink-RoadRunner Scenario Cosimulation Environment

This section shows how to set up a cosimulation environment between RoadRunner Scenario and
Simulink.

Specify the path to your local RoadRunner installation folder.

RRInstallationFolder = "C:\Program Files\RoadRunner R2022b\bin\win64";

Get the root object within the MATLAB settings hierarchical tree, and use it to set the installation
path of the RoadRunner application.

s = settings;
s.roadrunner.application.InstallationFolder.PersonalValue = RRInstallationFolder;

Set the path to your RoadRunner project folder.

rrProjectLocation = "C:\RRScenario\MyProjects";

Create and open the roadrunner object representing the specified project.

rrApp = roadrunner(rrProjectLocation, "InstallationFolder", RRInstallationFolder);

Run commands to add the following files to your RoadRunner project.

• ScenarioBasic_UDA_SL.rrscene — Scene file for the Simulink-RoadRunner Scenario
cosimulation example.

• buildingUDAScenarioFromScratch_v2.rrscenario — Scenario file based on
ScenarioBasic_UDA_SL.rrscene.

• CustomDriveAction.rraction.rrmeta — Action asset file that contains the list of custom
parameters and values of a user-defined action.

• UDA_SL.rrbehavior.rrmeta — Behavior asset file that links a Simulink actor behavior model to
a vehicle in the scenario.

copyfile("ScenarioBasic_UDA_SL.rrscene",fullfile(rrProjectLocation,"Scenes"));
copyfile("buildingUDAScenarioFromScratch_v2.rrscenario",fullfile(rrProjectLocation,"Scenarios"));
copyfile("CustomDriveAction.rraction.rrmeta",fullfile(rrProjectLocation,"Assets","Actions"));
copyfile("UDA_SL.rrbehavior.rrmeta",fullfile(rrProjectLocation,"Assets","Behaviors"));

3 Design and Simulate Scenarios

3-54

The following required files are present in the example folder.

• hUDA_SL.slx — Simulink actor behavior model that processes user-defined actions.
• BusCustomDriveAction.mat — MAT file that maps parameters entered for a user-defined

action in RoadRunner Scenario to the fields of a bus structure. Required as input by the Simulink
actor model behavior.

To check how the above files are created, see “Simulate RoadRunner Scenarios with Actors Modeled
in Simulink” (Automated Driving Toolbox).

Explore Scenario

Open the RoadRunner Scenario scene ScenarioBasic_UDA_SL.rrscene to run the Simulink-
RoadRunner Scenario cosimulation.

openScene(rrApp, "ScenarioBasic_UDA_SL");

Open the scenario file buildingUDAScenarioFromScratch_v2.

openScenario(rrApp,"buildingUDAScenarioFromScratch_v2");

The scenario contains a red ambulance stationary in a lane.

View the scenario logic in the Logic editor pane.

The ambulance moves at an initial absolute speed of 17.88 ms. In the second action phase, the
custom parameter Throttle Level is increased to 10, while the SteeringAngle is 0. In the final
action phase, the Throttle Level of the ambulance is increased to 40, and the SteeringAngle of the
ambulance is increased to 35.

Navigate to Assets > Behaviors in the Library Browser, and click on the behavior named UDA_SL.
In the Attributes pane on the right, note that the Platform is selected as MATLAB/Simulink. The
MATLAB actor behavior file name, hUDA_SL.slx is present in the File Name text box.

 Design Vehicle Following User-Defined Actions Scenario

3-55

Click on the red ambulance in the Scenario Edit Tool. In the Attributes pane, this behavior asset file
UDA_SL.rrbehavior is linked to the red ambulance.

Connect to the RoadRunner Scenario server to enable cosimulation by using the createSimulation
function.

ss = rrApp.createSimulation();

Simulate Scenario

Play the scenario, buildingUDAScenarioFromScratch_v2.

ss.set("SimulationCommand", "Start");

When the scenario is played, the ambulance moves sharply to left as the Steering Angle is increased
to from 0 to 35.

3 Design and Simulate Scenarios

3-56

See Also

Related Examples
• “Design Lane Change Scenario” on page 3-10
• “Design Lane Swerve Scenario” on page 3-20
• “Design Path Following Scenario” on page 3-28

More About
• “Define Scenario Logic” on page 3-75

 Design Vehicle Following User-Defined Actions Scenario

3-57

Design Vehicle Following User-Defined Events Scenario
A user-defined event is a mechanism to manage the flow of a scenario simulation from an actor within
the scenario. A user-defined event contains custom parameters that consist of a parameter name,
data type, and value.

Actor models created in MATLAB and Simulink can send user-defined events from one actor to all
other actors in a scenario. You can program actors receiving the broadcast user-defined event to
listen for and act on the event, or ignore the event.

You can also send user-defined events from an actor to a scenario simulation. For example, you can
use the value of an event parameter as a condition for the evaluation of an action phase within a
scenario simulation.

The example workflows on this page assume that you have RoadRunner and RoadRunner Scenario
licenses, and that both products are installed.

Control a Scenario Simulation using User-Defined Events

This example shows how a user-defined event can be broadcast from one actor to other actors in a
scenario simulation. On receiving an event, an actor can choose to implement certain behaviors in
response.

Set Up Cosimulation Environment

In the MATLAB command prompt, specify the path to your local RoadRunner installation folder. This
code snippet uses the default installation path of the RoadRunner application on Windows.

RRInstallationFolder = "C:\Program Files\RoadRunner R2022b\bin\win64";

To update the path for the RoadRunner installation folder, get the root object within the settings
hierarchical tree. Then, use the root object to set the installation path of the RoadRunner application.
For more information, see SettingsGroup (MATLAB).

s = settings;
s.roadrunner.application.InstallationFolder.PersonalValue = RRInstallationFolder;

Set the project location to the RoadRunner project folder on your machine where you are saving your
current work. For example:

rrProjectLocation = "C:\UserDefinedEventDemo";

Create and open the roadrunner object that represents the specified project.

rrApp = roadrunner(rrProjectLocation, "InstallationFolder", RRInstallationFolder);

Add these files to the appropriate folders within your RoadRunner project.

• demo_1road_scene.rrscene — Scene file for the MATLAB-RoadRunner cosimulation example.
• ExampleUDEs.rrscenario — Scenario file based on demo_1road_scene.rrscene.
• UDEVehicle.rrbehavior.rrmeta — Behavior asset file that links behavior encoded in the

UDEVehicle.slx Simulink model to a vehicle in the scenario.

3 Design and Simulate Scenarios

3-58

• hMATLAB_Agent.rrbehavior.rrmeta — Behavior asset file that links behavior encoded in the
hMATLAB_Agent.m MATLAB System object behavior to a vehicle in the scenario.

• ChangeLane.seevent.rrmeta — Event asset file that specifies the parameters of a user-defined
event to broadcast to all actors.

copyfile("demo_1road_scene.rrscene",fullfile(rrProjectLocation,"Scenes"));
copyfile("ExampleUDEs.rrscenario",fullfile(rrProjectLocation,"Scenarios"));
copyfile("UDEVehicle.rrbehavior.rrmeta",fullfile(rrProjectLocation,"Assets","Behaviors"));
copyfile("hMATLAB_Agent.rrbehavior.rrmeta",fullfile(rrProjectLocation,"Assets","Behaviors"));
copyfile("ChangeLane.seevent",fullfile(rrProjectLocation,"Assets","Events"));
copyfile("ChangeLane.seevent.rrmeta",fullfile(rrProjectLocation,"Assets","Events"));

Explore Scenario

Open the scene demo_1road_scene.rrscene for the MATLAB-RoadRunner Scenario cosimulation
example.

openScene(rrApp, "demo_1road_scene");

Open the scenario file ExampleUDEs.rrscenario.

openScenario(rrApp,"ExampleUDEs");

Visualize the scenario logic in the Logic editor pane. For more information, see “Define Scenario
Logic” on page 3-75.

The scenario contains a red ambulance in a lane, behind a white car.

Navigate to Assets > Behaviors in the Library Browser.

Click the behavior file named hMATLAB_Agent.rrbehavior. In the Attributes pane on the right,
note that the Platform is set to MATLAB/Simulink. The linked MATLAB actor behavior file name
hMATLAB_Agent.m is already present in the File Name text box. This file encodes the behavior of
the ambulance.

Similarly, the behavior file UDEVehicle.rrbehavior is linked to Simulink model
UDEVehicle_Final.slx as visible in the Attributes pane. This model dictates the behavior of the
white car at the head of the ambulance. It refers to the NewBusDef.mat file to obtain the latest
runtime pose, location and other vehicle information.

When the ambulance closes to a distance of less than 3.00 metres to the white car in front of it, an
event is broadcast from the ambulance to other actors in the scenario.

The event indicates that an ambulance is coming through. In response, the white car moves
immediately to the left lane, thereby letting the ambulance through without any hinderance.

 Design Vehicle Following User-Defined Events Scenario

3-59

Connect to the RoadRunner Scenario server to enable cosimulation by using the createSimulation
function.

ss = rrApp.createSimulation();

Simulate Scenario

Open the Simulink model representing the white car.

open_system('UDEVehicle_Final');

Load the Bus objects that allow the Simulink cosimulation agent to read dynamically changing vehicle
information from the scenario.

load('NewBusDef.mat');
load('rrScenarioSimTypes.mat');

Play the scenario.

ss.set("SimulationCommand", "Start");

The scenario unfolds as programmed with the ambulance moving at a higher speed than the white
car ahead. The white car jumps out of the way to make space for the ambulance.

See Also

Related Examples
• “Design Lane Change Scenario” on page 3-10
• “Design Lane Swerve Scenario” on page 3-20

3 Design and Simulate Scenarios

3-60

• “Design Path Following Scenario” on page 3-28

More About
• “Define Scenario Logic” on page 3-75

 Design Vehicle Following User-Defined Events Scenario

3-61

Switch Between Scene and Scenario Editing
When you have a RoadRunner Scenario license, you can switch between scene and scenario editing.

• Scenes are composed of static elements, such as roads, lanes, props, and terrain. Scene editing
requires only a RoadRunner license, and is the default editing mode in RoadRunner.

• Scenarios are composed of dynamic elements, such as moving vehicles. Scenarios are built on top
of scenes, and scenario editing requires a RoadRunner Scenario license. If the RoadRunner
Scenario license is not present, then attempting to switch to scenario editing mode results in an
error.

In scene editing mode, you can create a scene, add and delete static assets, and edit the lanes and
maneuver roads. In scenario editing mode, you can add or delete vehicles on the road, add anchors,
and specify the paths of vehicles.

Scene Editing Scenario Editing

Switch Between Editing Modes
To switch between editing modes, use the yellow toggle button in the upper-right corner of the
RoadRunner application. The menu has Scene Editing and Scenario Editing options, and you can
toggle between the two modes.

3 Design and Simulate Scenarios

3-62

Switch to Scene Editing Switch to Scenario Editing
To switch to scene editing, when the yellow
toggle button says Scenario Editing, click it and
select Scene Editing.

To switch to scenario editing, when the yellow
toggle button says, Scene Editing, click it and
select Scenario Editing.

Alternatively, you can switch between editing modes by using the keyboard shortcuts. Press Shift+1
to switch to scene editing mode and Shift+2 to switch to scenario editing mode.

Note Switching between editing modes resets the undo/redo stack.

How Scene Editing Affects Scenarios
Scenarios are built on top of scenes. Therefore, editing a scene can significantly affect scenarios. For
example, modifying the road network can change which lanes the vehicles drive on or change to.
Open the TrajectoryCutIn scenario, which is included in the Scenarios folder of new
RoadRunner projects. In this scenario, the Ego vehicle cuts into the lane of the Lead vehicle.

Scenarios open with the scene they were previously saved with, which in this case is the
ScenarioBasic scene. This scene is included in the Scenes folder of new RoadRunner projects.
Switch to scene editing mode and delete one of the driving lanes by using the Lane Tool.

 Switch Between Scene and Scenario Editing

3-63

Switch back to scenario editing mode and open the TrajectoryCutIn scenario into this scene by
opening the File menu and selecting Open Scenario Into Current Scene. The white vehicle no
longer cuts-in, because it has no second lane to cut into.

How Scenario Editing Affects Scenes
In most cases, the edits that you make to a scenario do not affect the active scene. For example,
actors in a scenario are not part of a scene, so modifying an actor path or position does not prompt
you to save changes to the scene.

Road anchors, however, are considered part of the scene, and are active during scenario editing.
Road anchors are points along roads that actors on the road attach to. Changes to road anchors, such
as moving or renaming them, are saved to the scene, and can affect scenarios that open into these
scenes.

Moving Road Anchors

When you move an anchor, the actors anchored to it move with it, as shown in these figures. In

Scenario Editing mode, click the Show All Anchors button to view all anchors in the
scenario. In these figures, the Ego and the Lead vehicles are anchored to the road anchor. Moving
the anchor along the road moves the two vehicles along the road, maintaining their relative positions
to the anchor.

3 Design and Simulate Scenarios

3-64

If you move a road anchor within a scenario, and then switch to scene editing mode and select the
Road Anchor Tool, you can see the new position of the anchor reflected in the scene.

Moving an anchor in a scene can affect the starting positions of any actors that attach to it. When
moving road anchors, keep in mind how scenarios that use the scene might be affected by the move.

Renaming Road Anchors

Changes to road anchor names are also saved to the scene. If you rename a road anchor in a scene,
any scenario actors attached to that anchor become unanchored in that scene. To resolve this issue,
you must update the anchor parent of each actor that was attached to the anchor. For more details,
see “Change Anchor Parent” on page 3-124.

See Also
Road Anchor Tool

More About
• “Relocate Scenarios” on page 3-134
• “Scenario Anchoring System” on page 3-118

 Switch Between Scene and Scenario Editing

3-65

Path Editing
During simulation, actors in a scenario move using either their built-in behavior or by moving along a
path that you specify for them. This scenario shows a sample path for a vehicle that includes
segments following the road and one segment that goes off-road.

Add Path Along Driving Lane
To add a path for an actor along its driving lane, follow these steps:

1 In the scenario editing canvas, click an actor to select it.
2 Right-click along the driving lane of the actor.

The added path segment extends from the actor to the point where you right-clicked and ends with a
path waypoint.

By default, paths added onto a road network snap to the center of the lane. You can then extend this
path by clicking and dragging the waypoint, and the path remains snapped to the lane center.

3 Design and Simulate Scenarios

3-66

Create Lane Changes
To add a lane change to a path, drag a waypoint into another lane.

You can drag waypoints across multiple lanes.

The generated path remain snapped to the lane centers. By default, lane changes take place over a
maximum distance of 20 meters. To modify this distance, select the path or any segment or waypoint
along it, and in the Attributes pane, modify the Lane Change Distance attribute. Lane change
distances apply to the entire path. This table shows sample lane change distance values.

Lane Change Distance = 10
meters

Lane Change Distance = 20
meters

Lane Change Distance = 30
meters

Extend Path with Additional Segments
To extend paths by adding new path segments, follow these steps:

 Path Editing

3-67

1 Click the path to you want to extend to select it. Alternatively, click a segment or waypoint along
that path.

2 Right-click the location that you want to extend the path to.

A new path segment extends from the previous waypoint and ends in a new waypoint at the point
where you right-clicked.

Split Path into Separate Segments
To split a path or path segment into separate segments, right-click within the path to add a new
waypoint.

Modify Path Tangents
To change the shapes of paths, you can modify the tangents of path waypoints. To modify path
tangent, click a waypoint to select it, and then click and drag the tangent lines to set the direction
and scale of the tangent.

3 Design and Simulate Scenarios

3-68

For more details on working with tangents, see “Tangent Editing”.

Set Specific Path Lengths
To set specific lengths of path segments, select a path waypoint and in the Attributes pane, under
Forward Offset, modify the Offset value. This value sets how many meters the waypoint is offset
from its parent anchor.

By default, path segments are anchored to the road. If you want to set path lengths relative to the
vehicle, then you must change the anchor parent of the waypoints.

Consider this vehicle path containing two path waypoints. The waypoints are 25 meters and 50
meters in front of the road anchor, respectively.

Suppose you want to set the intermediate waypoint 10 meters in front of the vehicle. Changing only
the Offset value of this waypoint offsets it from the road anchor, not the vehicle.

To offset the waypoint 10 meters from the vehicle, you must first change its anchor parent from the
road anchor to the vehicle, and then set the offset value, by following these steps:

 Path Editing

3-69

1 Select the waypoint.
2 From the Attributes pane, select the name of the parent anchor from the Anchor attribute box.
3 Select the vehicle from either the scenario editing canvas or the Logic editor. RoadRunner

outlines these areas in blue lines.
4 Set Offset to 10 meters.

This image shows the updated offset values. If you drag the vehicle, the first waypoint remains fixed
10 meters in front of the vehicle. The second waypoint remains fixed in place, because it is still
anchored to the road. If you wanted the second waypoint to remain fixed 50 meters in front of the
vehicle, you must change its anchor parent to the vehicle as well.

For more details on working with anchors, see “Scenario Anchoring System” on page 3-118.

Set Precise Waypoint Locations
By default, path waypoints lock to an anchor. If you disable anchoring, you can set more precise
(x,y,z) locations of path waypoints. Follow these steps:

1 In the scenario editing canvas, select the path waypoint you want to set the precise location for.
2 In the Attributes pane, under Point Offsets, clear the Enable Anchoring attribute.
3 Under Position, modify the X, Y, and Z coordinate values. These values are relative to the scene

origin.

Shift Paths Within Lanes
To shift a path laterally within a lane, hold the Ctrl key and then drag the path waypoint you want to
shift. This image shows a path segment shifted to the curb to simulate a parking maneuver.

To set more precise lane-relative locations of waypoints, modify the waypoint attributes in the Lane
Offset section of the Attributes pane. This table shows sample lane offset attributes for a waypoint.

3 Design and Simulate Scenarios

3-70

Lane Offset Attributes Description
Relative To — Road Edge

Offset From — Right Lane

Direction — 2 lane(s)

Travel Direction — With Road Anchor

Lateral Offset — 1.5 meters

Set waypoint two lanes from the road edge and in
the same travel direction of the road anchor.
Offset the lane 1.5 meters to the right of the lane
center.

Create Free-Form Paths
All path segments so far have followed the road network. To create more free-form paths that go on
and off the roads, you can have path segments ignore the road network.

1 Click a path segment to select it.

2 In the Attributes pane, select Freeform under Route Segment Parameters.

When you drag the waypoint at the end of the segment that ignores the road network, the segment no
longer snaps to the center of the lane. You can now more easily create U-turn or off-road paths. For
example, in this image, the second and fourth path segments ignore the road network.

 Path Editing

3-71

If you modify these segments to follow the road network, then they follow the road to reach the
desired waypoints, leading to long and winding paths. For example, this image shows the second path
segment following the road network. To reach the opposite side of the highway, the segment follows
the long loop around the intersection.

For additional control over segments that ignore the road network, you modify their curve types. In
the Attributes pane, change the Curve Type attribute of the selected segments. This table describes
the curve types.

3 Design and Simulate Scenarios

3-72

Curve Type Description
Cubic (default) Path segment follows a cubic polynomial curve.

Clothoid Path segment follows a clothoid curve, where the
curve changes linearly with distance.

Export Options for Paths
When exporting a path to the ASAM OpenSCENARIO format, you can specify whether the actor uses
physical or non-physical motion when following the path. First, select a path segment, and then, in
the Attributes pane, in the Export Options section, set Actor Movement to Physical or Non-
Physical.

The Actor Movement setting does not affect the simulation in RoadRunner Scenario. Physical and
non-physical motion attributes on paths affect only files exported to the ASAM OpenSCENARIO
format, which you can use in simulators that consider the dynamic constraints of the actor.

 Path Editing

3-73

See Also

Related Examples
• “Design Path Following Scenario” on page 3-28

More About
• “Scenario Anchoring System” on page 3-118

3 Design and Simulate Scenarios

3-74

Define Scenario Logic
RoadRunner Scenario provides a graphical interface for defining the logic of a scenario. This
graphical Logic editor is available from the 2D Editor pane. The scenario logic defined in this editor
consists of a series of actions, with optional conditions that trigger those actions. Actions and
conditions can also occur in parallel, enabling you to build complex scenarios containing multiple
actors that have different goals. Consider the logic for a scenario containing a car and a truck that
perform lane and speed change actions.

The boxes are action phases. The first action phase for each vehicle specifies the initial state of the
vehicles at the start of simulation.

The subsequent action phases specify the actions that the vehicles perform during simulation.

The circular nodes are conditions. These conditions trigger the next action phase to occur during
simulation. For example, the car starts its next action phase after a certain amount of simulation time
elapses. The truck starts its next action phase after it reaches a certain distance from a point.

 Define Scenario Logic

3-75

The scenario also includes an end condition. In this case, the scenario ends after a certain amount of
simulation time elapses. Scenario end conditions also include a default fail condition in which the
simulation ends as soon as any actor collides with another actor. If a scenario does not have an end
condition, then the simulation continues indefinitely.

The rows containing the separate vehicle action phases and conditions are serial phases, which occur
in order during simulation.

The action phases for the car in the interior box make up a parallel phase. These action phases occur
in parallel during simulation.

3 Design and Simulate Scenarios

3-76

The scenario itself is also a parallel phase that consists of two serial phases: one for the truck and one
for the car.

Initial Action Phases
When you drag a vehicle or other actor asset into a scenario, the Logic editor adds a new initial
action phase for that actor. The initial action phase sets the state of the actor at the start of the
simulation.

Initial action phases correspond to actors in the scenario. To add a new initial action phase, drag a
new actor from the Library Browser into the scenario. All actors in a scenario must have a
corresponding initial action phase. Deleting an initial action phase for an actor results in a simulation
failure.

You can delay the initialization of the actor –– the time when the actor appears in your scenario –– by
adding a Wait action before the initial action phase. First, right-click the initial action phase in the
Logic editor. Then, in the context menu, select Add Action Phase Before. By default, RoadRunner
Scenario creates a Wait action with a Duration condition of 5.00s, this delays the initialization of
the actor by 5 seconds during the simulation.

You can set and modify initial action phases from the Attributes pane. This table shows the attributes
common to all action phases, including initial action phases.

Attribute Description
Name Name of the action phase. In the corresponding

action phase box, this name is prepended to the
actor name.

Use these names to make the scenario logic more
readable.

 Define Scenario Logic

3-77

Attribute Description
Actor Actor that performs the action.

To select an actor, first click the attribute box.
Then, select an actor from the scenario editing
canvas or the Logic editor. To frame the camera
around the actor, click the Frame object in the

scene button .

Initial Speed Action

The Initial Speed action sets the speed of the actor at the start of simulation. You must set this
action, and actors can have only one Initial Speed action. This table shows the Initial Speed
attributes you can set.

Attribute Description
Motion Motion behavior of the actor at the start of the

simulation. This attribute is read-only, and is set
based on whether you specify a path for the actor
to follow.

• Follow Lane — Actor follows its current
lane. For a lane-following example, see
“Design Lane Following Scenario” on page 3-
2.

• Follow Path — Actor follows a predefined
path. For a path-following example, see
“Design Path Following Scenario” on page 3-
28.

Relative to Method used to set the initial speed of the actor.
The option you select changes what the Speed
attribute represents.

• Absolute — Actor starts the simulation at
Speed m/s.

• Actor — Actor starts the simulation at Speed
m/s relative to Reference Actor, given the
speed direction specified by Direction.

Default: Absolute

3 Design and Simulate Scenarios

3-78

Attribute Description
Speed Actor speed, in meters per second. Depending on

the Relative to value you select, Speed is either
the absolute speed of the actor at the start of
simulation or a speed relative to another actor.

If you specify an actor to move at the same speed
as the reference actor (Relative to specified as
Actor, and Direction to Same as), then the
Speed attribute does not apply.

Default: 17.88 m/s
Reference Actor Reference actor that the initial actor Speed value

is relative to.

To select an actor, first click the attribute box.
Then, select an actor from the scenario editing
canvas or the Logic editor. To frame the camera
around the actor, click the Frame object in the

scene button .

This option applies only when you set Relative to
to Actor.

Direction Relative speed of the actor compared to the
specified Reference Actor.

• Faster than — Actor starts the simulation
at Speed m/s faster than the reference actor.

• Slower than — Actor starts the simulation
at Speed m/s slower than the reference actor.

• Same speed as — Actor starts the
simulation at the same speed as the reference
actor.

This option applies only when you set Relative to
to Actor.

Change Behavior Parameter Actions

Change Behavior Parameter actions set the initial values of parameters defined in the behavior
file for an actor. Behavior files enable you to control the behavior of vehicle actors either from within
RoadRunner Scenario or from external simulators, such as CARLA or Simulink. These behavior
parameters are included in exports to ASAM OpenSCENARIO. For more details on behaviors, see
“Specify and Assign Actor Behaviors” on page 3-156.

Consider a behavior file, MyBehavior.rrbehavior, that has an acceleration parameter with a
default value of 30 m/s (Name = Acceleration, Value = 30).

 Define Scenario Logic

3-79

Suppose a vehicle in the scenario has its Behavior asset set to this behavior file.

If you add a Change Behavior Parameter action to an action phase, you can select the
Acceleration parameter under Name and then set this parameter to a new Value.

3 Design and Simulate Scenarios

3-80

In initial action phases, you can add as many behavior parameters as are available in the behavior
file. In subsequent action phases, you can set only one behavior parameter per phase. To change
multiple behavior parameters, you must create parallel phases. The Logic editor displays the names
of all behavior parameters being changed. This sample logic displays multiple behavior parameter
changes on the initial phase and subsequent behavior parameter changes in parallel phases.

Change Global Parameters

Global parameters in RoadRunner Scenario adjust conditions for the entire scenario. Global
parameters are flexible, and you can use them to represent different types of scenario parameters
such as speed limit and time of day. To create a new global parameter, right-click an empty space in
the right pane of the Library Browser, select New, and then click Parameter Collection.

 Define Scenario Logic

3-81

A parameter collection is a group of parameters that you can use in multiple scenarios. In the
Attributes pane for the parameter collection asset, you can add parameters by selecting Add
Parameter then specifying the names in the corresponding Name fields, data types in the
corresponding Data Type drop-down lists, and values in the corresponding Value fields.

To assign a parameter collection to a scenario, select the global parameters icon to access the
Attributes pane for Global Parameters and drag the parameter collection asset from the Library
Browser to the Parameter Asset field.

By default, RoadRunner Scenario references global parameters from the associated parameter
collection asset. To initialize parameter values, in the global parameters Attributes pane, under
Global Parameters, select the check boxes next to the corresponding parameter names.

3 Design and Simulate Scenarios

3-82

To change global parameters during simulation, add an action in the Logic editor, and, in the
Attributes pane, set the Action Type to Change Global Parameter. To check the value of a
global parameter during simulation, use a global parameter condition . To add a global parameter
condition, create a condition in the Logic editor, and, in the Attributes pane, select Global
Parameter from the Add Condition drop-down. You can combine behavior and global parameters,
as well as parameter actions and conditions, to design your scenario logic.

Parameter Data Types

RoadRunner Scenario supports these data types for parameters: string, double, uint16, int32,
uint32, boolean, and datetime. In parameter collections, you can specify the data type of each
parameter value.

To define the data type for a parameter, select a parameter asset in the Library Browser and then, in
the Attributes pane, select a data type from the Data Type list. You can then specify the value of this
parameter in the Value field. Note that a parameter collection can contain parameters with various
data types. Parameter assets imported from MATLAB use the string data type by default.

The names and data types of the parameters defined in a parameter collection asset are also
displayed as elements of the Name list in the Attributes pane of conditions and actions.

 Define Scenario Logic

3-83

The Value field of a parameter must be a valid value for the selected data type. RoadRunner Scenario
validates parameter values upon simulation or export, and if it cannot convert the value to the
selected data type, then the validation fails and returns an error in the Output pane.

Action Phases
You can add action phases before or after any other action phase, including an initial phase. To add
an action phase after an existing one, right-click the action phase and select Add Action Phase
After. In the Logic editor, the new phase appears selected and inherits its actor assignment form the
previous action phase. To add an action phase before an existing one, after you right-click the action
phase, select Add Action Phase Before, which creates a new Wait action and Duration condition
before the selected action phase in the Logic editor.

When adding an action phase after a selected action that does not have an assigned actor, or after
multiple selected phases with different actors, the added action phase does not include an actor
assignment.

3 Design and Simulate Scenarios

3-84

To delete an action phase, select that phase and press Delete.

As with initial action phases, subsequent action phases include Name and Actor attributes. The
Action Type attribute contains the actions that you can set.

Change Speed Actions

The Change Speed action is similar to the Initialize Speed action. However, instead of starting
the action phase at the specified speed, the actor must transition to that speed using specified actor
dynamics.

In the Attributes pane for this action, use the Change Speed attributes to set the target speed that
the actor transitions to after the action starts. This table shows the attributes that you can set.

Attribute Description
Relative to Method used to set the speed of the actor. The

option you select changes what the Speed
attribute represents.

• Absolute — Actor travels at Speed m/s.
• Actor — Actor travels at Speed m/s relative

to Reference Actor, given the speed
direction specified by Direction.

Default: Absolute
Speed Actor speed, in meters per second. Depending on

the Relative to value you select, Speed is either
the absolute speed of the actor or a speed
relative to another actor.

If you specify an actor to move at the same speed
as the reference actor (Relative to specified as
Actor, and Direction to Same as), then the
Speed attribute does not apply.

Default: 17.88 m/s
Reference Actor Reference actor that the initial actor Speed value

is relative to.

To select an actor, first click the attribute box.
Then, select an actor from the scenario editing
canvas or the Logic editor. To frame the camera
around the actor, click the Frame object in the

scene button .

This option applies only when you set Relative to
to Actor.

 Define Scenario Logic

3-85

Attribute Description
Direction Relative speed of actor compared to the specified

Reference Actor.

• Faster than — Actor ends the simulation at
Speed m/s faster than the reference actor.

• Slower than — Actor ends the simulation at
Speed m/s slower than the reference actor.

• Same speed as — Actor ends the simulation
at the same speed as the reference actor.

This option applies only when you set Relative to
to Actor.

Speed Offset Speed offset value, in meters per second. The
Speed Offset attribute determines the speed of
the actor relative to another actor.

Default: 0.00 m/s

This option applies only when you set Relative to
to Actor and Direction to Faster than or
Slower than. If you set Direction to Same
speed as, then the Speed Offset attribute does
not apply.

Speed Offset must be a positive value between 0
and 100.

Speed Sampling Sampling method that the actor uses to achieve a
speed relative to the reference actor.

• At start of action — Actor sets its
relative speed based on the speed of the
reference actor at the start of the action.

• Continuous — Actor sets its relative speed
based on the speed of the reference actor over
the course of the action.

This option applies only when you set Relative to
to Actor.

3 Design and Simulate Scenarios

3-86

Attribute Description
Allow Negative Speed Specifies whether or not an actor that references

the speed of another actor can reverse direction
along its path or trajectory.

For example, given an actor, Follow, with its
Direction set to Slower than and speed offset
by 5 m/s from the reference actor Lead, when
you select Allow Negative Speed and Lead
reaches a speed of 0 m/s or less, Follow begins
moving in reverse to maintain its speed offset. If
you clear Allow Negative Speed, then, when
Lead reaches a speed of 0 m/s or less, Follow
stops but does not reverse.

For more information on negative speed in
scenarios, see “Negative Vehicle Speed” on page
3-130.

This option applies only when you set Relative to
to Actor and the actor in your scenario has a
path or trajectory.

Use the Dynamics attributes to set the dynamics that the actor uses to achieve the speed change.
This table shows the attributes that you can set.

Attribute Description
Dynamics Type Dynamics that the actor uses to achieve the

action, specified as one of these options:

• Over distance — Actor achieves the action
over the distance specified by Distance.

• Over time — Actor achieves the action over
the time specified by Time.

• With acceleration — Actor achieves the
action with the acceleration specified by
Acceleration.

Default: Over distance
Distance Distance, in meters, over which the actor

achieves the action.

This attribute applies only when you set
Dynamics Type to Over distance.

Default: 10.00 m

 Define Scenario Logic

3-87

Attribute Description
Time Time, in seconds, over which the actor achieves

the action.

This attribute applies only when you set
Dynamics Type to Over time.

Default: 10.00 s
Acceleration Acceleration, in meters per second squared, that

the actor uses to achieve the action.

This attribute applies only when you set
Dynamics Type to With acceleration.

Default: 10.00 m/s2

3 Design and Simulate Scenarios

3-88

Attribute Description
Dynamics Profile Dynamics profile that the actor uses to achieve

the action, specified as one of these options:

• Cubic — Action follows a cubic polynomial
over time or distance.

• Linear — Action changes linearly over time
or distance.

• Step — Action changes step-wise over time or
distance.

This attribute applies only when you set
Dynamics Type to Over distance or Over
time.

Default: Cubic

Change Lane Actions

Use a Change Lane action to change the lane of an actor using the specified dynamics.

 Define Scenario Logic

3-89

For an example that uses lane change actions, see “Design Lane Change Scenario” on page 3-10.

If you set Relative to to Current Lane, then the target lane is relative to the lane that the actor is
on. You can then set the Direction and Lane Offset attributes to specify the number of lanes, in
either direction, that the target lane is offset from the current lane. This table shows a sample target
lane specification.

Target Lane Attributes Description
Relative To — Current Lane

Direction — To the right

Offset — 2 lane(s)

Target lane is two lanes to the right of the current
lane of the actor.

If you set Relative to to Actor, then the target lane is relative to the current lane of the actor
specified by Reference Actor. You can then set the Direction and Lane Offset attributes to specify
the number of lanes, in either direction, that the target lane is offset from the lane of the reference
actor. This table shows sample target lane specifications.

Target Lane Attributes Description
Relative To — Actor

Reference Actor — Sedan2

Direction — To the left

Lane Offset — 3 lane(s)

Target lane is three lanes to the left of the lane
that Sedan2 is in.

Relative To — Actor

Reference Actor — Sedan2

Direction — Same Lane

Target lane is the same lane that Sedan2 is in.

Use the Dynamics attributes to set the dynamics that the actor uses to achieve the lane change. This
table shows the attributes that you can set.

3 Design and Simulate Scenarios

3-90

Attribute Description
Dynamics Type Dynamics that the actor uses to achieve the

action, specified as one of these options:

• Over distance — Actor achieves the action
over the distance specified by Distance.

• Over time — Actor achieves the action over
the time specified by Time.

• With acceleration — Actor achieves the
action with the acceleration specified by
Acceleration.

Default: Over distance
Distance Distance, in meters, over which the actor

achieves the action.

This attribute applies only when you set
Dynamics Type to Over distance.

Default: 10.00 m
Time Time, in seconds, over which the actor achieves

the action.

This attribute applies only when you set
Dynamics Type to Over time.

Default: 10.00 s
Acceleration Acceleration, in meters per second squared, that

the actor uses to achieve the action.

This attribute applies only when you set
Dynamics Type to With acceleration.

Default: 10.00 m/s2

 Define Scenario Logic

3-91

Attribute Description
Dynamics Profile Dynamics profile that the actor uses to achieve

the action, specified as one of these options:

• Cubic — Action follows a cubic polynomial
over time or distance.

• Linear — Action changes linearly over time
or distance.

• Step — Action changes step-wise over time or
distance.

This attribute applies only when you set
Dynamics Type to Over distance or Over
time.

Default: Cubic

Change Lateral Offset Actions

Use a Change Lateral Offset action to change how much an actor is offset from its lane center
using the specified dynamics. This figure shows sample lateral offset actions applied to a red sedan.

3 Design and Simulate Scenarios

3-92

For an example that uses lateral offset actions, see “Design Lane Swerve Scenario” on page 3-20.

This table shows the attributes that you can set in the Attributes pane for this action.

Attribute Description
Lateral Offset Lateral offset, in meters, of the actor from the

center of its lane. Lateral offset is positive to the
right of the actor and negative to the left of the
actor. This figure shows lateral offset values of
-1.5 and 1.5 meters, respectively.

Default: 0.00 m
Time Time, in seconds, over which the actor achieves

the action.

Default: 5.00 s

 Define Scenario Logic

3-93

Attribute Description
Dynamics Profile Dynamics profile that the actor uses to achieve

the action, specified as one of these options:

• Cubic — Lateral offset change follows a cubic
polynomial over time.

• Linear — Lateral offset changes linearly over
time.

• Step — Lateral offset changes step-wise over
time.

This attribute applies only when you set
Dynamics Type to Over distance or Over
time.

Default: Cubic

Change Longitudinal Distance Actions

Use a Change Longitudinal Distance action to change the longitudinal distance between an
actor and the reference actor using the specified dynamics. You can use this action to maintain a
constant longitudinal distance gap between two actors.

3 Design and Simulate Scenarios

3-94

For a built-in vehicle, you can use the Change Longitudinal Distance action only if its reference
actor is also in the same lane.

This figure shows a red sedan and white sedan traveling on the same lane while maintaining a
constant longitudinal distance gap.

For an example that uses longitudinal distance actions, see “Design Overtake Using Longitudinal
Distance Condition Scenario” on page 3-44.

This table shows the attributes that you can set.

Attribute Description
Relative Position Indicates the relative position of the actor with

respect to the reference actor.

• Ahead of — The actor is ahead of the
reference actor.

• Behind — The actor is behind the reference
actor.

Default: Behind
Reference Actor Reference actor that the actor moves relative to.

The reference actor is selected from the canvas.
Distance Type Specification of longitudinal distance as either

time distance or space distance.

• Space — The longitudinal distance is
measured in terms of the physical (space)
distance between an actor and the reference
actor.

• Time — The longitudinal distance is measured
in terms of the time interval between an actor
and the reference actor.

Default: Space
Space Distance Offset or Time Distance
Offset

Target longitudinal distance gap between an
actor and the reference actor. The name of the
graphical control depends on the Distance Type
that you select.

• Space Distance Offset — Target
longitudinal distance gap, measured in the
space dimension.

• Time Offset Distance — Target
longitudinal distance gap, measured in the
time dimension.

 Define Scenario Logic

3-95

Attribute Description
Measure From Method of calculation of longitudinal distance

between an actor and the reference actor.

• Bounding Boxes — The longitudinal
distance is measured between the edges of
the bounding boxes of the two actors.

• Origins — The longitudinal distance is
measured between the origin points of the two
actors.

Sampling Mode The method by which the Longitudinal Distance
action is applied.

• At start of action — The actor achieves
the target longitudinal distance gap to the
reference actor during the Change
Longitudinal Distance action phase.

• Continuous — The actor can achieve the
target longitudinal distance gap to the
reference actor even outside the bounds of the
Change Longitudinal Distance action
phase. The action continues until another
action controlling longitudinal distance is
activated or the simulation ends.

Dynamic Constraints This section describes any constraints that an
actor must observe while executing the
longitudinal distance action. These are the
different constraint types:

• Asset Constraints — The actor must
follow the constraints included in its own list
of attributes. To view the attributes of a
vehicle, click on the vehicle thumbnail in the
Library Browser, and check the Attributes
pane on the right-hand side.

• Custom — The actor must comply with the
vehicle acceleration or deceleration values
that you have specified in the Max
Acceleration, Max Deceleration and Max
Speed text boxes.

• Unlimited — The actor can achieve the
target longitudinal distance with no
constraints.

User-Defined Actions

Use a User Defined action to dispatch custom parameters of a user-defined action from
RoadRunner Scenario to a MATLAB System object or Simulink behavior model for further processing.
After processing, the modified actor behavior is written back to the scenario.

3 Design and Simulate Scenarios

3-96

Because the RoadRunner Scenario built-in actor behavior model ignores user-defined actions, a user-
defined action must be sent to a cosimulation actor configured in MATLAB or Simulink. Use MATLAB
functions, such as getAction, or Simulink blocks, such as RoadRunner Scenario Reader and
RoadRunner Scenario Writer, to retrieve and process user-defined actions.

A user-defined action can represent vehicle characteristics, such as braking force or steering angle,
that can be modeled using basic actor attributes like pose or velocity.

For an example that uses user-defined actions, see “Design Vehicle Following User-Defined Actions
Scenario” on page 3-50.

This table shows the attributes that you can set.

Attribute Description
Action Asset Action asset file that contains custom parameter

names and values.

To create an action asset file:

1 Right-click in the space next to the asset
folders list in the Library Browser and
select New > Action from the context menu.

2 An action asset file with the.rraction file
extension is automatically created. Enter a
name for the action asset file.

Action Name Action name.

If you are mapping a user-defined action to a
Simulink.Bus object for a Simulink actor
behavior model, then you must use the action
name entered here.

Parameter Name Name of custom parameter within a user-defined
action.

Parameter Value Value of custom parameter.

Wait Actions

Unlike other actions, the Wait action is not tied to a specific actor. Use Wait actions when you want
to pause for a set amount of time after the previous action is completed.

For example, suppose you want an actor to change lanes, wait five seconds after the completing the
lane change, and then change speeds. Using a Duration condition to specify the delay does not work.

Duration conditions become active as soon as the previous action starts, not when it finishes. This
means that the 5 second delay might end before the actor even completes its lane change.

To resolve this issue, use a Wait action with a 5 second Duration condition, instead.

 Define Scenario Logic

3-97

Change Behavior Parameter

The Change Behavior Parameter action functions the same way as the similar actions uses in
initial phases, as described in “Initial Action Phases” on page 3-77. The only difference is that, in non-
initial action phases, you can specify only one behavior parameter change per action.

Remove Actor Actions

The Remove Actor action removes an actor from the scenario during simulation run time. The rest
of the simulation continues until it reaches a specified simulation end condition.

You can use conditions, such as Simulation Time or Distance to Point, to specify when to
remove an actor. For example, if you create a scenario where an ego vehicle passes multiple
reference vehicles, you can use Remove Actor to remove each of the reference vehicles once they
are beyond a certain distance from the ego vehicle.

If you programmatically import actors using CSV trajectories, you can specify when to remove an
actor from your scenario by specifying the remove_time setting. For more information about
programmatically setting actor attributes when importing CSV trajectories, see “Set Additional
Attributes when Importing CSV Trajectories Programmatically” on page 2-6.

An actor must have an Initialize Speed action before you can remove it using the Remove
Actor action. If you attempt to remove an actor that does not have an Initialize Speed action,
RoadRunner Scenario returns an error in the Output pane, and the simulation does not run.

Once you remove an actor from the scenario using a Remove Actor action, you cannot add that
same actor back to the scenario during simulation run time. You also cannot reference a removed
actor with actions or conditions. If an action or condition references an actor after the actor has
completed its Remove Actor action, the simulation stops and RoadRunner Scenario returns an error
in the Output pane.

RoadRunner Scenario does not currently support adding Behavior assets created by external
platforms, such as CARLA or Simulink, to actors that have Remove Actor actions.

Send Event

Use the Send Event action type to enable an actor to send an event to other actors in a scenario. An
event contains parameters — name-value pairs— that define an event's attributes.

Any sent event is automatically broadcast to all participating actors; actors listening for a particular
event are able to receive the event and act accordingly.

This table shows the Send Event attributes that you can set.

3 Design and Simulate Scenarios

3-98

Attribute Description
Name Name of the Send Event action phase.
Event Asset Event asset file that contains parameter names

and values.

To create and use an event asset file:

1 Navigate to the Library Browser > Events
folder, right-click in the space to the right of
the Library Browser pane, and select New
> Event from the context menu.

2 An action asset file with a .rrevent file
extension is created. Enter a name for the
action asset file.

3 Enter a descriptive Event Name in the
Attributes pane on the right.

4 To add parameters, select Add Parameter
and enter a parameter Name, a Data Type,
and initial Value. The Data Type can be one
of the following:

• string
• double
• uint16
• int32
• uint32
• boolean
• datetime

The entered parameter Value must match
with the chosen datatype.

5 Once you have constructed the event, click
the Send Event action phase. Drag the
newly created .rrevent file to the Event
Asset box.

Event Name Name of event as specified during event creation.

When you add the event asset file to the Event
Asset box, the Event Name is automatically
populated.

Parameter Name (Data Type) Value of specified parameter during the Send
Event action phase.

This value can be different from the initial value
entered during event creation.

 Define Scenario Logic

3-99

Conditions
Conditions specify the transitions between action phases. Each condition is associated with the action
phase that immediately precedes it. The actor continues to perform this previous action until it meets
the specified condition.

When you create a new scenario, the Logic editor adds a condition that triggers the end of the
simulation.

You can add additional conditions after any action phase (or parallel action phase) by following these
steps:

1 In the Logic editor, click one of the open circular nodes.
2 In the Attributes pane, click Add Condition, and set the attributes for that condition.

Conditions are optional. If you do not specify a condition, then, after the previous action phase is
complete, the next action begins immediately.

Simulation Time Condition

If you set Condition to Simulation Time, then the actor performs the previous action until the
simulation time specified by Time elapses. Units are in seconds.

Actor Speed Condition

If you set Condition to Actor speed, then the actor performs the previous action until an actor
reaches a specified speed. The specified speed can be relative to the speed of another actor.

3 Design and Simulate Scenarios

3-100

This table shows the attributes that you can set.

Attribute Description
Actor Actor that you want to reach either the speed

specified by Speed or the speed of the actor
specified by Reference Actor.

To select an actor, first click the attribute box.
Then, select an actor from the scenario editing
canvas or the Logic editor. To frame the camera
around the actor, click the Frame object in the

scene button .
Relative to Method used to set the speed condition. The

option you select changes what the Speed
attribute represents.

• Absolute — Condition is met when the actor
reaches Speed m/s.

• Actor — Condition is met when the actor is
traveling Speed m/s relative to Reference
Actor, given the speed direction specified by
Direction.

Default: Absolute

 Define Scenario Logic

3-101

Attribute Description
Rule Method used to compare actor speed. When you

set Relative to to Absolute, RoadRunner
Scenario uses the method specified by Rule to
compare the actor speed to the specified value of
Speed. When you set Relative to to Actor,
RoadRunner Scenario uses the method specified
by Rule to compare the actor speed to the speed
defined by the Reference Actor, Direction, and
Speed Offset attributes.

Rule supports these comparison methods:

• Equal to –– The actor performs a behavior
once it reaches the reference speed.

• Greater or equal –– The actor performs a
behavior once it reaches a speed greater than
or equal to the reference speed.

• Greater than –– The actor performs a
behavior once it reaches a speed greater than
the reference speed.

• Less or equal –– The actor performs a
behavior once it reaches a speed less than or
equal to the reference speed.

• Less than –– The actor performs a behavior
once it reaches a speed less than the
reference speed.

• Not equal to –– The actor performs a
behavior once it reaches a speed that is not
equal to the reference speed.

Default: Equal to
Speed Speed value, in meters per second. The Speed

attribute is an absolute, rather than a relative,
speed.

Default: 0.00 m/s

This option applies only when you set Relative to
to Absolute.

3 Design and Simulate Scenarios

3-102

Attribute Description
Reference Actor Reference actor that the actor travels relative to.

To select an actor, first click the attribute box.
Then, select an actor from the scenario editing
canvas or the Logic editor. To frame the camera
around the actor, click the Frame object in the

scene button .

This option applies only when you set Relative to
to Actor.

Direction Relative speed of the actor compared to the
specified Reference Actor.

• Faster than — Condition is met when the
actor travels Speed Offset m/s faster than the
reference actor.

• Slower than — Condition is met when the
actor travels Speed Offset m/s slower than
the reference actor.

• Same speed as — Condition is met when
actor the travels at the same speed as the
reference actor.

This option applies only when you set Relative to
to Actor.

Speed Offset Speed offset value, in meters per second. The
Speed Offset attribute determines the speed of
the actor relative to another actor.

Default: 0.00 m/s

This option applies only when you set Relative to
to Actor and Direction to Faster than or
Slower than. If you set Direction to Same
speed as, then the Speed Offset attribute does
not apply.

Speed Offset must be a positive value between 0
and 100.

 Define Scenario Logic

3-103

Attribute Description
Speed Sampling Sampling method that the actor uses to achieve a

speed relative to the reference actor.

• At start of action — Actor sets its
relative speed based on the speed of the
reference actor at the start of the action.

• Continuous — Actor sets its relative speed
based on the speed of the reference actor over
the course of the action.

This option applies only when you set Relative to
to Actor.

Distance to Point Condition

If you set Condition to Distance to Point, then the actor performs the previous action until an
actor is a certain distance away from a specified point.

This table shows the attributes that you can set.

Attribute Description
Actor Actor that you want to reach the point specified

by Point.

To select an actor, first click the attribute box.
Then, select an actor from the scenario editing
canvas or the Logic editor. To frame the camera
around the actor, click the Frame object in the

scene button .
Point Target path waypoint.

To select a point, first click the attribute box.
Then, select a point from the scenario editing
canvas or the Logic editor. To frame the camera
around the actor, click the Frame object in the

scene button .

3 Design and Simulate Scenarios

3-104

Attribute Description
Rule Rule used to determine the distance-to-point

condition, specified as one of these options:

• Less than — The actor meets the condition
when it is less than Threshold meters from
the point.

• Greater than — The actor meets the
condition when it is more than Threshold
meters from the point.

Default: Less than
Threshold Radial distance around the point, in meters, at

which the actor meets the condition specified by
Rule.

Default: 0.00 m
Height Offset Height of the point, in meters, above the ground.

Default: 0.500 m

Distance to Actor Condition

If you set Condition to Distance to Actor, then the actor performs the previous action until an
actor is a certain distance away from another actor.

 Define Scenario Logic

3-105

This table shows the attributes that you can set.

Attribute Description
Actor Actor that you want to reach the actor specified

by Reference Actor.

To select an actor, first click the attribute box.
Then, select an actor from the scenario editing
canvas or the Logic editor. To frame the camera
around the actor, click the Frame object in the

scene button .
Reference Actor Reference actor that you want the actor specified

by Actor to reach.

To select an actor, first click the attribute box.
Then, select an actor from the scenario editing
canvas or the Logic editor. To frame the camera
around the actor, click the Frame object in the

scene button .
Rule Rule used to determine the distance-to-actor

condition, specified as one of these options:

• Less than — The actor meets the condition
when it is less than Threshold meters from
the reference actor.

• Greater than — The actor meets the
condition when it is more than Threshold
meters from the reference actor.

Default: Less than

3 Design and Simulate Scenarios

3-106

Attribute Description
Threshold Linear distance, in meters, from the reference

actor at which the actor meets the condition
specified by Rule.

Default: 0.00 m

Longitudinal Distance to Actor Condition

If you set Condition to Longitudinal Distance to Actor, then the actor performs the previous
action until it is at a certain longitudinal distance from another actor.

For an example that uses longitudinal distance conditions, see “Design Overtake Using Longitudinal
Distance Condition Scenario” on page 3-44.

This table shows the attributes that you can set.

Attribute Description
Actor Actor for which you want to apply the

longitudinal distance condition.
Relative Position Indicates the relative position of the actor with

respect to the reference actor.

• Ahead of — The actor is ahead of the
reference actor.

• Behind — The actor is behind the reference
actor.

Reference Actor Reference actor that the actor moves relative to.
The reference actor is selected from the canvas.

Rule Determines the condition that the longitudinal
distance between Actor and Reference Actor
must satisfy by a certain Threshold value.
Specified as one of these options:

• Less than — The actor meets the condition
when its longitudinal distance to the reference
actor is less than the threshold value.

• Greater than — The actor meets the
condition when its longitudinal distance to the
reference actor is greater than the threshold
value.

 Define Scenario Logic

3-107

Attribute Description
Threshold Longitudinal distance, in meters, from the

reference actor at which the actor meets the
condition specified by Rule.

For example, consider that Relative Position is
set to Behind, Rule is set to Greater than and
Threshold is set to 5.00 m. To satisfy this
longitudinal distance condition, the actor must be
more than 5 metres behind the reference actor.

Default: 0.00 m
Measure From Measure of the longitudinal distance between the

Actor and Reference Actor with respect to the
vehicle boundaries.

Bounding boxes — Measures longitudinal
distance between the bounding boxes of the two
actors.

Origin — Measures longitudinal distance
between the origin points of the two actors.

Measure Distance Method of calculation of longitudinal distance
between the Actor and the Reference Actor.

• Along lane curvature –– Measures
longitudinal distance as the distance between
the two actors, projected onto the curvature of
their lane of travel.

• Longitudinal distance only ––
Measures longitudinal distance as the
distance between the two actors, projected
onto the heading direction.

Time to Actor Condition

If you set Condition to Time To Actor, then the actor performs the previous action until it is a
certain number of seconds from reaching the relative position of another actor. The time to actor
condition calculates the time to the reference actor by taking the longitudinal distance between the
two actors and dividing it by the relative velocity of one actor compared to the other.

3 Design and Simulate Scenarios

3-108

This table shows the attributes that you can set.

Attribute Description
Actor Actor for which you want to apply the time to

actor condition.
Reference Actor Reference actor that the actor moves relative to.

Select the reference actor from the canvas.
Rule Determines the condition that the time between

Actor and Reference Actor must satisfy by the
specified Threshold value. Specified as one of
these options:

• Less than — The actor meets the condition
when its time to the reference actor is less
than the specified threshold value.

• Greater than — The actor meets the
condition when its time to the reference actor
is greater than the specified threshold value.

Threshold Time, in seconds, to the reference actor at which
the actor meets the condition specified by Rule.

For example, if Rule is set to Greater than and
Threshold is set to 5.00 s, this time to actor
condition is satisfied when the time the actor
would take to reach the reference actor is greater
than 5 seconds.

Default: 0.00 s
Measure From Position from which to measure of the

longitudinal distance between the Actor and
Reference Actor.

Bounding boxes — RoadRunner Scenario
measures the longitudinal distance between the
bounding boxes of the two actors.

Origin — RoadRunner Scenario measures the
longitudinal distance between the origin points of
the two actors.

 Define Scenario Logic

3-109

Attribute Description
Measure Distance Method of calculating longitudinal distance

between the Actor and the Reference Actor.
RoadRunner Scenario uses the resulting
longitudinal distance to calculate the time
between the actors.

• Along lane curvature –– RoadRunner
Scenario measures the longitudinal distance
as the distance between the actors, projected
onto the curvature of the lane in which they
are moving.

• Longitudinal distance only ––
RoadRunner Scenario measures the
longitudinal distance as the distance between
the actors, projected onto the heading
direction of the actor.

RoadRunner Scenario does not support using the time to actor condition to compare actors that are
not traveling in parallel directions, such as actors on perpendicular roads in a junction.

Collision Condition

If you set Condition to Collision, then the actor performs the previous action until the actor
specified by First Actor collides with the actor specified by Second Actor.

By default, First Actor and Second Actor are set to any actor, meaning that the scenario ends upon
the first collision between any two actors.

Duration Condition

If you set Condition to Duration, then the actor performs the previous action for the amount of
time specified by Duration. Units are in seconds.

AND Condition

If you set Condition to AND, then the actor transitions to the next action only when all the preceding
conditions joined by an AND condition have been completed. If any of the conditions joined by an AND
condition do not complete, then the actor does not transition to the next action.

3 Design and Simulate Scenarios

3-110

Multiple Conditions

In the Attributes pane for a condition, by clicking Add Condition, you can add multiple conditions.
The condition node changes to reflect that multiple conditions are set.

When the actor meets any one of the conditions specified, then the entire condition is considered met
and the scenario transitions to the next action phase.

Fail Conditions

The condition node at the end of the scenario contains an extra Fail Conditions section in the
Attributes pane.

 Define Scenario Logic

3-111

Use fail conditions to end the scenario as soon as one of the specified conditions is met. You can
specify any of the previously described conditions. The default fail condition is when any actor
collides with any other actor.

Phase State Conditions

Check the runtime state of a phase in the Logic Editor by using phase state conditions. To model a
phase state condition, create a condition in the Logic Editor and, in the Attributes pane, under
Conditions, select Phase State. The phase state condition checks the status of a phase during
simulation to determine whether its state is running or complete.

Phase state conditions enable more complex synchronization between actor actions, beyond serial
and parallel execution.

In this example, the white sedan has parallel Change Lane and Change Speed actions after a Wait
action with a phase state condition linked to the Change Lane and Change Speed actions of the red

3 Design and Simulate Scenarios

3-112

sedan. As a result, the white sedan waits for the red sedan to finish its lane transition, then changes
lanes and accelerates once the lane transition is complete.

Event Condition

An event condition allows you to check if the parameters of an event comply with certain rules.

In this example, the scenario simulation moves on from the action phase Yellow only when the value
of the parameter ActorID(uint32) of the event ChangeLane is greater than 2.

 Define Scenario Logic

3-113

Serial Phases
Serial phases are collections of action phases and optional conditions that happen consecutively
during simulation. Typically, the actions of a specific actor are all part of one serial phase. When you
right-click an action phase and select Add Action Phase After or Add Action Phase Before, you
add a new action phase that occurs sequentially with the selected phase. By default, an action phase
created after an existing phase inherits the attributes of the previous phase, while an action phase
created before an existing phase has the Wait action type.

Parallel Phases
Parallel phases are collections of phases that happen at the same time during simulation. Serial
phases that correspond to each vehicle in a scenario collectively make up a parallel phase, where the
actions of the actors happen in parallel. You can create parallel phases for any action phase except
initial action phases.

3 Design and Simulate Scenarios

3-114

To create a parallel action phase, right-click an existing action phase and select Add Action Phase
Above or Add Action Phase Below. The new action phase appears above or below the existing one.
The phase is initialized with the actor of the existing phase but has no actions specified.

Use these parallel phases to organize your scenario logic. For example, suppose your scenario
contains a chain of speed changes and lane changes. You can specify the speed change actions in one
serial phase and the lane changes in another.

Logic Editor During Simulation
During simulation, the action phases and conditions change color to indicate the progression of the
scenario. The colors have these meanings:

• Green — The action phase or condition is complete.
• Orange — The action phase or condition is in progress.
• Gray — The action phase or condition has not yet been reached.
• Gray and Red — The action phase or condition has been skipped.
• Green and Red — The action phase or condition has been interrupted.

If an action is interrupted, the vehicle actor invokes this default control behavior:

• If a longitudinal action is interrupted, the actor retains its current speed.
• If a lateral action is interrupted, the actor corrects its yaw to maintain the lateral offset from its

last source.

Actions that are set to run continuously, and do not have a specified end condition, remain orange in
the Logic editor and continue indefinitely.

 Define Scenario Logic

3-115

These figures show samples of the Logic editor pane during simulation.

Logic Editor Limitations
• After the initial phase, you can set only one action per phase. To set multiple, simultaneous action

phases, define the actions in parallel phases.
• Change Lane actions are not supported for actors containing predefined paths. During

simulation, the actors follow the paths and do not perform the lane change actions.
• Setting Change Lane and Change Lateral Offset actions in the same serial phase is not

supported.
• The Actor Speed condition is not supported for export to ASAM OpenSCENARIO 1.0.
• The Change Lane and Change Lateral Offset actions might not work as expected on lane

loops. A lane loop is a sequence of connected lanes along multiple roads that loop back to the road
that the vehicle is on. In some lane loops, the current lane of the vehicle and its adjacent lane are
considered part of the same lane sequence, as shown in this figures.

3 Design and Simulate Scenarios

3-116

The Change Lane and Change Lateral Offset actions determine their behavior based on the
current lane of the vehicle and its adjacent lanes. For example, suppose a vehicle performs an
action relative to another lane, such as a lane change to the left. If RoadRunner Scenario detects
that the current lane of the vehicle and the lane to the left are part of the same lane sequence,
then the action ends immediately. The lane change does not occur because RoadRunner Scenario
considers both lanes to be a single lane.

By default, RoadRunner Scenario detects lane loops within 200 meters in front of or behind the
vehicle along its lane. To reduce this distance so that current and adjacent lanes in a loop are
considered separate lanes, in the SimulationConfiguration.xml file, decrease the
MaxSearchDistance parameter. For more details, see Simulation Configuration.

See Also

Related Examples
• “Explore and Simulate a Simple Scenario” on page 1-30
• “Design Lane Following Scenario” on page 3-2
• “Design Lane Change Scenario” on page 3-10
• “Design Lane Swerve Scenario” on page 3-20
• “Design Path Following Scenario” on page 3-28

 Define Scenario Logic

3-117

Scenario Anchoring System
RoadRunner Scenario uses an anchoring system in which you can specify the positions of objects as
being relative to points called anchors. In a scenario, an anchor can be:

• A point on a road or junction
• A point specifying the location of an actor
• A path waypoint

You can anchor to any location-based scenario object, such as vehicles or path waypoints. When you
move an anchor, the objects anchored to it move with it. This feature enables you to move an entire
scenario to a new location by dragging a single point. Also, you can relocate anchors and the attached
scenarios within the scene and between scenes. For more information on anchor and scenario
relocation, see “Relocate Scenarios” on page 3-134.

Consider a scenario in which four vehicles are either directly or indirectly children of a road anchor.
The orange arrows in this figure indicate the anchor parentage in the scenario. The road anchor is in
lavender.

If you move the white cement truck backward, the other three vehicles anchored either directly or
indirectly to it also move backward. The road anchor remains fixed.

If you move the blue pickup truck forward, only the red ambulance moves with it, because the
ambulance is the only other vehicle for which the pickup truck is an anchor parent.

3 Design and Simulate Scenarios

3-118

If you move the yellow car, no other vehicles move with it because no other objects have it as an
anchor parent. The same case applies for the red ambulance.

If you move the road anchor, all four vehicles move with it, enabling you to move the scenario to an
entirely new location in a scene.

If you the change the shape of a road, the vehicles adapt to the changes while maintaining their
relative positioning constraints.

Anchor Object to Road
When you first add a scenario object, such as a vehicle, on or near a road, the scenario adds an
anchor that is in the center of the road and parallel with the object.

 Scenario Anchoring System

3-119

By default, each object you add to a scenario has anchoring enabled. In the Attributes pane for that
actor, under Point Offsets, the Enable Anchoring attribute is selected. This behavior applies to
vehicles and other actors, as well as to path waypoints.

If you add additional objects to the same road, these objects also attach to this road anchor. If you
drag an object to a new road, the parent anchor of the object switches to the road anchor of the new
road. To prevent an object from changing anchors, in the Attributes pane, select Lock To Anchor.

Move Objects Relative to Anchor
Each anchoring-enabled object has a Point Offsets section in its Attributes pane that indicates its
forward offset and lane offset from the anchor.

When you drag an object along a lane, then, in the Attributes pane, under Forward Offsets, the
Offset value of the object from its parent anchor changes. Units are in meters. This table shows
sample changes in forward offsets.

Positive Forward Offset Negative Forward Offset

When you drag an object into a different lane, then, in the Attributes pane, under Lane Offset, the
offset of the object from the reference lane changes. This table shows the Lane Offset attributes that
you can set.

Attribute Description
Relative To Specify the location that the anchor is relative to.

The only option available is Road Edge.
Offset From Specify whether the lane offset of the object is

measured from the leftmost or rightmost lane in
the travel direction of that object by selecting
either Left Lane or Right Lane.

3 Design and Simulate Scenarios

3-120

Attribute Description
Lane Offset Select the number of lanes by which the object is

offset from the lane.
Travel Direction Select whether the object is offset with the travel

direction of the anchor or against its travel
direction.

Lateral Offset Specify how many meters the object is offset from
the center of its lane. Lateral Offset is negative
to the left and positive to the right for offset from
lane center

For example, this vehicle is offset two lanes from its left-lane road edge. The vehicle is following the
travel direction of the anchor, and no lateral offset is applied.

When relocating scenarios within a scene, actors maintain their lane-relative positions. For example,
suppose a car is in the rightmost lane (zero lanes from the road edge) and a turning lane forms in the
middle of the road. If you move the anchor along the road, the car moves into the turning lane to
maintain a relative position of zero from the road edge.

 Scenario Anchoring System

3-121

To address this, set predefined paths for cars. For an example, see the “Design Path Following
Scenario” on page 3-28 example.

Manually Add Road Anchors
RoadRunner Scenario automatically creates a new anchor any time you add a vehicle to a scenario.

You can manually add new road anchors to a scene by selecting the Road Anchor Tool .
Manually adding anchors enables you to add multiple road anchors to a single road, which can be
useful on long roads.

To manually add an anchor to a road, follow these steps:

1 Switch to scene editing mode. From the top-right corner of the RoadRunner application, select
Scenario Editing, then Scene Editing.

2
From the RoadRunner toolbar, click the Road Anchor Tool .

3 Click to select the road to which you want to apply an anchor.

4 Right-click the road to apply the anchor to the center of the road.

3 Design and Simulate Scenarios

3-122

5 Switch back to scenario editing mode. From the top-right corner of the RoadRunner application,
select Scene Editing, then Scenario Editing.

You can now attach objects to this anchor as you would any other road anchor.

Modify Anchor Attributes
To modify anchor attributes, select the anchor, or the actor or path waypoint that is an anchor to
another object, and make your changes in the Attributes pane. The anchor attributes of scenario
objects, such as vehicles and path waypoints, are saved to the scenario. When you change these
attributes, they affect only the other objects in the scenario. The attributes of road anchors are saved
to the scene. If other scenario files use this scene and reference the anchor you change, then those
files can also be affected.

Note When choosing anchor names, choose something easy to remember so that the scenarios are
easier to relocate later.

For example, suppose you change the Name attribute of a road anchor to ScenarioStart.

For actors within the current scenario, the name of their parent anchor updates automatically to
reflect the new name. However, in other scenario files that use this scene, the parent anchor name

 Scenario Anchoring System

3-123

does not change. Instead, objects previously attached to this anchor become unanchored, and you
must manually change their actor parent.

Change Anchor Parent
To change the anchor parent of an object, follow these steps:

1 Click the object, such as a vehicle, to select it.
2 In the Attributes pane, click the name of the anchor that is defined in the Anchor attribute.

RoadRunner Scenario highlights the scenario editing canvas and Logic editor with blue lines to
indicating the areas from which you can select a new parent anchor.

3 In the areas highlighted by the blue lines, select a new parent anchor. If you select an action
phase from the Logic editor, then RoadRunner Scenario updates the anchor to the actor that is
associated with that action phase.

To find the location of the current parent anchor in the scenario, click the frame button next to

Anchor attribute value .

Change Travel Direction of Actors
If you select a road anchor, then, in the Attributes pane, you can change its Travel Direction setting
to change the travel direction of all objects either directly or indirectly attached to that anchor. The
Forward and Backward travel direction options are based on the direction in which the road was
created.

Travel Direction Set to Forward Travel Direction Set to Backward

3 Design and Simulate Scenarios

3-124

Align Objects Using Anchors
You can also use anchors as alignment points. For example, suppose you want to align two vehicles
that have the same road anchor by their front bumpers.

Follow these steps:

1 Select the first vehicle. Then, in the Attributes pane, under Forward Offset, select Manual
Reference Line. You can now change how the Offset value from the anchor is measured. By
default, Offset is measured from the middle of a vehicle.

2 Set Reference Line to Front. The offset of the vehicle is now measured from the front of the
vehicle.

3 Set Offset to 0.
4 Repeat the previous steps for the second vehicle. The two vehicles now have their front bumpers

aligned with the road anchor. If you drag the road anchor or adjust its Distance value in the
Attributes pane, the front bumpers of the cars remain aligned.

Set Anchors for Path Waypoints
When you specify paths for an actor, the path waypoints anchor to the road by default. Dragging an
actor does not change the position of the path waypoint.

 Scenario Anchoring System

3-125

Path waypoints have the same Forward Offset and Lane Offset attributes as actors, except for the
Manual Reference Line attribute.

Relocate Scenarios to Other Scenes
When you load a scenario into a new scene, objects in the scenario try to attach to the road anchor
with the same name as the one in the previous scene. If an anchor with the same name is not present
in the scenario, then all objects associated with that anchor become unanchored. For more details on
relocating scenarios into new scenes, see “Relocate Scenarios” on page 3-134.

See Also

Related Examples
• “Explore and Simulate a Simple Scenario” on page 1-30
• “Relocate Scenarios” on page 3-134

3 Design and Simulate Scenarios

3-126

Lane and Actor Direction in Scenarios
You can use bidirectional lanes and negative vehicle speeds in RoadRunner Scenario to influence
actor behavior. With bidirectional lanes, you can simulate lanes that support simultaneous travel in
opposing directions. With negative speeds, you can simulate actors, such as a car or pedestrian,
moving backward.

Bidirectional Lanes
Bidirectional lanes are lanes in which vehicles can travel in either direction. To create bidirectional
lanes, you must activate Scene Editing mode and use the Lane Tool. To learn more about the Lane
Tool and road and lane editing in RoadRunner, see Lane Tool and “Roads, Lanes, and Markings”.

Once your scene contains bidirectional lanes, using Scenario Editing mode, you can place a vehicle
directly in the bidirectional lane, or use a Change Lane action phase to simulate the vehicle
changing from a unidirectional lane to a bidirectional lane. To learn more about building scenario
logic and action phases, see “Define Scenario Logic” on page 3-75.

To simulate scenarios with junctions that have bidirectional lanes, because actors must have
maneuvers routed to follow lanes in junctions, you must first create maneuvers for the bidirectional
lanes. If you simulate a vehicle following a bidirectional lane that enters a junction without
maneuvers routed from the bidirectional lane, the vehicle stops and does not perform any other
scenario behavior.

To create maneuvers within junctions, with Scene Editing mode active, select the Maneuver Tool

, then select the junction. Next, click the node point for the bidirectional lane and right-click
the node point where you want the maneuver to end. To learn more about the Maneuver Tool and
creating maneuvers in junctions, see Maneuver Tool.

 Lane and Actor Direction in Scenarios

3-127

When placed in a bidirectional lane, the Travel Direction attribute for the actor automatically
changes to Bidirectional. If you change the Travel Direction attribute of an actor to Bidirectional
while it is in a unidirectional lane, the actor automatically relocates to the nearest bidirectional lane
on the same road.

If no bidirectional lane is present in the scenario, the bidirectional lane is not close enough to the
actor or is on a separate road, or the bidirectional lane is in a junction that does not have maneuvers,
RoadRunner Scenario displays an error in the Attributes pane: This point has an
unreachable forward or lane offset.

Note As of R2022b, if the Lane Offset of the actor is not 0 lane(s), RoadRunner Scenario still
displays this error when a valid bidirectional lane is present, until you reposition the actor within the
bidirectional lane.

3 Design and Simulate Scenarios

3-128

Vehicle actors placed in bidirectional lanes follow the same built-in behavior as they do on
unidirectional lanes. The direction of the road anchor determines the default heading. To change the
travel direction, select the tangent for the vehicle, and rotate it to the desired heading. Alternatively,
with the tangent selected, in the Tangent section of the Attributes pane, set the Heading field to
180 to rotate the vehicle 180 degrees. To learn more about road anchors, see “Scenario Anchoring
System” on page 3-118.

Note If there is no road anchor, the heading of actors in bidirectional lanes is determined by the
direction in which you create the road. For example, if you create a road from left to right, the actor
heading is to the right.

 Lane and Actor Direction in Scenarios

3-129

Negative Vehicle Speed
RoadRunner Scenario supports both forward and reverse movement for vehicle and pedestrian actors
along paths or trajectories. You can specify whether an actor moves forward or backward during
simulation by specifying negative speeds with action phases and conditions.

As of R2022b, RoadRunner Scenario does not support negative speeds with built-in lane-following
behavior for vehicles, only path-following behavior. To simulate reverse motion with negative speeds
using path-following behavior, you must first create a path or trajectory for the actor. To learn more
about built-in vehicle behavior and creating paths, see “Built-In Behavior for Vehicles” on page 3-145
and “Path Editing” on page 3-66.

Simulate a Reversing Actor

To simulate a reversing vehicle or pedestrian actor, select an actor in the scenario that already has a
path, and follow these steps:

1 In the Logic editor, right-click the initial action phase for the actor and select Add Action Phase
After.

3 Design and Simulate Scenarios

3-130

2 Select the new action phase and, in the Attributes pane, set Action Type to Change Speed.
3 In the Change Speed section, set Relative to to Absolute.
4 Set Speed to a negative value.
5

To simulate your scenario, select the Simulation Tool from the toolbar. Then, in the
Simulation pane, under Simulation Controls, select Play.

Note If the actor reaches the end of the path or trajectory before completing the action phases or
conditions, the actor stops and interrupts any remaining action phases and conditions. To avoid this,
increase the length of the path or trajectory for the actor. Alternatively, adjust your scenario logic to
reduce the time required for the actor to complete its actions until it can do so within the current
length of the path or trajectory. For example, in the Dynamics section of the Attributes pane, you
can increase the Acceleration value, or change the Dynamics Type to Over time and adjust the
Time value.

Enable Reverse Movement for Reference Actors

You can also enable reverse motion behavior for actors that reference the speed of another actor,
which you can use to simulate scenarios such as a vehicle backing up to avoid a collision.

To specify that an actor that references the speed of another actor can reverse direction along its
path or trajectory, select the corresponding Change Speed action phase and, in the Attributes pane,
select Allow Negative Speed. For example, given an actor, Follow, with its Direction set to
Slower than and speed offset by 5 m/s from the reference actor Lead, when you select Allow
Negative Speed and Lead reaches a speed of 0 m/s or less, Follow begins moving in reverse to
maintain its speed offset. If you clear Allow Negative Speed, then, when Lead reaches a speed of 0
m/s or less, Follow stops but does not reverse.

To design a scenario using Allow Negative Speed, follow these steps:

1 Place two vehicle actors in the same lane, one in front of the other.
2 (Optional) Select the vehicle in front and, in the Attributes pane, name it Lead, then select the

rear vehicle and name it Follow.
3 Create a path for each actor, ensuring the paths overlap.
4 For the Lead vehicle, in the Logic editor, right-click the initial action phase for the actor and

select Add Action Phase After.

 Lane and Actor Direction in Scenarios

3-131

5 Select the new action phase and, in the Attributes pane, set Action Type to Change Speed.
6 In the Change Speed section, set Relative to to Absolute.
7 Set the Speed value to 0 m/s.

8 For the Follow vehicle, in the Logic editor, right-click the initial action phase for the actor and
select Add Action Phase After.

9 Select the new action phase and, in the Attributes pane, set Action Type to Change Speed.
10 In the Change Speed section, set Relative to to Actor.
11 Set Reference Actor to the Lead vehicle in the scenario.
12 Set Direction to Slower than, Speed Offset to 5.00 m/s, Speed Sampling to Continuous,

and select Allow Negative Speed.

13
To simulate your scenario, select the Simulation Tool from the toolbar. Then, in the
Simulation pane, under Simulation Controls, select Play.

For more information about designing scenario logic in RoadRunner Scenario, see “Define Scenario
Logic” on page 3-75.

3 Design and Simulate Scenarios

3-132

Limitations
RoadRunner Scenario does not support path creation on bidirectional lanes. You must set paths for
vehicles in bidirectional lanes to Freeform. Otherwise, RoadRunner Scenario displays an error in the
Attributes: Routing is not currently supported on bidirectional lanes. Adjust
the waypoints or make this a freeform segment. To set a path to Freeform, select a
segment of the path in the scenario. Then, in the Attributes pane, in the Route Segment
Parameters section, select Freeform.

The initial action phase of an actor can accept a negative speed value. However, if its initial speed is
negative, an actor does not move when you run the simulation. To perform negative speed behaviors,
actors must first have a positive initial speed and move forward along their path or trajectory.

RoadRunner Scenario does not support negative values in the Speed Offset field.

See Also
Road Anchor Tool | Maneuver Tool | Lane Tool

More About
• “Path Editing” on page 3-66
• “Scenario Anchoring System” on page 3-118
• “Define Scenario Logic” on page 3-75
• “Built-In Behavior for Vehicles” on page 3-145
• “Roads, Lanes, and Markings”
• “Import Trajectories from CSV Files” on page 2-5

 Lane and Actor Direction in Scenarios

3-133

Relocate Scenarios
In RoadRunner Scenario, you can move scenarios around within a scene and relocate scenarios to
different scenes entirely. By relocating scenarios, you can test how driving algorithms handle the
same scenario in various environments.

Relocate Scenario Within a Scene
RoadRunner Scenario uses an anchoring system in which the actors and path waypoints are
positioned relative to specific anchor points, such as a point on a road or a point specifying an actor
location. If you drag a road anchor along a road, any actors that are attached to that anchor move
with it. For example, this figure shows a road anchor, and the scenario attached to it, moving from a
straight portion of a road to a curved portion.

You can drag road anchors along only the road that they belong to. To move a scenario to an entirely
new road, you must update the parent road anchor of each actor. For more details on changing parent
anchors, see “Change Anchor Parent” on page 3-124.

When relocating scenarios along a road, actors maintain their lane-relative positions. For example,
suppose a car is in the rightmost lane (zero lanes from the road edge) and a turning lane forms in the
middle of the road. If you move the anchor along the road, the car moves into the turning lane to
maintain a relative position of zero from the road edge.

3 Design and Simulate Scenarios

3-134

If you want a vehicle to stay in the same lane throughout a scenario, then you must set a predefined
path for it. For an example of setting a predefined path, see “Design Path Following Scenario” on
page 3-28.

Relocate Scenario to New Scene
RoadRunner Scenario provides both an interactive and a programmatic way to load an existing
scenario into a new scene.

Note When you load a scenario into a new scene, the new scene must contain a road anchor with the
same name as the parent anchor of the scenario actors. If no such anchor exists in the new scene,
then the actors that were attached to that anchor become unanchored and attach to the scenario
center point.

When developing scenes for use with multiple scenarios, consider using consistent names for all road
anchors in the scenario. To change a road anchor name, select the anchor and update the Name
attribute. To add new road anchors to scenes, use the Road Anchor Tool.

 Relocate Scenarios

3-135

Relocate Scenarios Interactively

By default, when you open a scenario, the scenario opens into the scene that it was last saved with.
To open a scenario into a different scene, follow these steps:

1 Switch to scene editing mode. From the top-right corner of the RoadRunner application, select
Scenario Editing, then Scene Editing.

2 Open the scene that you want to load the scenario into. From the File menu, select Open Scene,
and browse for the scene. For example, this figure shows the SanAntonio scene, which is one of
the scenes included by default in the Scenes folder of RoadRunner projects.

3 Switch to scenario editing mode. From the top-right corner of the RoadRunner application, select
Scene Editing, then Scenario Editing.

4 Load the scenario into the opened scene. From the File menu, select Open Scenario into
Current Scene, and browse for the scenario. For example, this figure shows the
TrajectoryCutIn scenario, which is one of the scenarios included by default in the Scenarios
folder of RoadRunner projects.

3 Design and Simulate Scenarios

3-136

In this example, loading the TrajectoryCutIn scenario into the SanAntonio scene worked
because:

• The scene contains a road anchor named ScenarioStart.
• The actors in the TrajectoryCutIn scenario have the ScenarioStart anchor as their parent.

The ScenarioBasic scene also has an anchor named ScenarioStart, so you can load the scenario
into this scene as well.

If you load the scenario into one of the default scenes that does not have a ScenarioStart anchor,
such as FourWayStop, then the actors attach instead to the scenario center point, which can cause
unexpected results. For example, in this figure, the actors drive off the scene and do not follow the
lanes.

 Relocate Scenarios

3-137

To resolve this issue, you can add a ScenarioStart anchor to the scene by using the Road Anchor
tool.

Relocate Scenarios Programmatically

You can programmatically relocate a scenario to a new scene by using MATLAB functions. For
example, this MATLAB code reproduces the example loading the TrajectoryCutIn scenario into
the SanAntonio scene. It assumes that you have a project located under C:\RR\MyProject and you
are using Windows.

projectFolder = fullfile("C:","RR","MyProject");
rrApp = roadrunner(projectFolder);
openScene(rrApp,"SanAntonio");
openScenario(rrApp,"TrajectoryCutIn",keepCurrentScene=true);

For more details on using these functions to relocate scenarios, see SaveScenario.

Alternatively, you can use the language-neutral gRPC API. This command-line code is equivalent to
the previously shown MATLAB code.

AppRoadRunner --projectPath="C:\RR\MyProject"
CmdRoadRunnerApi "LoadScene(file_path='SanAntonio')"
CmdRoadRunnerApi "LoadScenario(file_path='TrajectoryCutIn' keep_current_scene='true')"

For more details on using the gRPC API to relocate scenarios, see “Reuse Scenarios in Multiple
Scenes Using gRPC API” on page 4-13.

3 Design and Simulate Scenarios

3-138

See Also

More About
• “Scenario Anchoring System” on page 3-118
• “Reuse Scenarios in Multiple Scenes Using gRPC API” on page 4-13

 Relocate Scenarios

3-139

Validate Scenarios
RoadRunner Scenario checks for issues in a scenario at various stages of the scenario design process:

• As you edit a scenario, live warnings and errors display in the Logic editor, Attributes pane, or
scenario editing canvas.

• When you simulate a scenario, RoadRunner Scenario checks that the simulation can run and
displays scenario issues in the Output pane.

• When you export a scenario, the Output pane displays any issues with exporting valid scenario
files.

Use these reports to debug your scenarios so that you can export valid scenarios.

Editing Checks
While editing a scenario, live warnings and errors can display in the Logic editor, the Attributes
pane, or in the scenario editing canvas. In the scenario shown, a Sedan car has a path set to cross a
dividing median lane into the opposing lane. The error displays visually as a red exclamation tag at
the midpoint of the path segment that violates the check.

The check also appears as an error message in the Attributes pane.

3 Design and Simulate Scenarios

3-140

The error message shows the failed check and recommends a fix. For this particular error, the fix
requires either altering the vehicle trajectory to move along valid paths, or to enable the vehicle to
follow a freeform segment on this path.

Runtime Checks
Runtime checks occur at two points during a simulation. Prior to starting the simulation, the entire
scenario is set up and configured to start running. RoadRunner Scenario applies a series of checks
during this setup. Once the simulation starts running, certain events can cause the simulation to stop
executing. This list shows an example of each of these check types.

• A runtime setup check occurs when a part of the scenario either violates a known constraint or is
not defined. In the scenario shown, two sedans are driving in separate lanes.

 Validate Scenarios

3-141

The leading sedan, Sedan2, is configured with a speed change action phase relative to another
actor.

The action phase attributes, do not assign a Reference Actor, leaving the parameter set to
<none>.

During simulation setup, the Output panel shows the issue as an error in red. A yellow hyperlink
connects to the action phase attributes that fail the setup check, in this case the unset Reference
Actor attribute.

3 Design and Simulate Scenarios

3-142

• RoadRunner Scenario performs a runtime check whenever an event occurs that requires the
simulation to stop execution. For example, when a collision occurs between two cars, as shown in
the figure, the simulation stops.

The Output panel displays the details of the error. Because the error condition occurs as part of
the simulation, the error displays in white text rather than red. Runtime errors that occur as part
of the simulation stop the simulation at the moment of the error. This enables you to investigate
the error, in this case a collision, without missing the context of the error.

Export Checks
When exporting a scenario to ASAM OpenSCENARIO, the same runtime checks are applied to the
scenario. Additionally, RoadRunner Scenario performs checks that are specific to this export format.
For more information on exporting scenarios, see “Export to ASAM OpenSCENARIO” on page 5-2.

When a check fails, the warnings and errors are shown in the output of the export modal window. The
results and errors are also shown in the Output pane in RoadRunner Scenario. Use the Output pane
to find and address the failed checks before running the export operation again.

 Validate Scenarios

3-143

Note All the errors shown in the modal window also show in the Output pane, we recommend using
the Output pane to debug any issues.

See Also
“Export to ASAM OpenSCENARIO” on page 5-2 | Simulation Tool

3 Design and Simulate Scenarios

3-144

Built-In Behavior for Vehicles
RoadRunner Scenario defines autonomous behavior for vehicles. If you do not specify custom
behavior for a vehicle, then that vehicle follows built-in behavior during simulation. RoadRunner
Scenario supports these built-in behaviors for vehicles:

• Lane-following behavior — Vehicle drives along the center of its lane.
• Lane-changing behavior — Vehicle changes its lane when it receives a Change Lane action.
• Lateral offset behavior — Vehicle moves laterally to shift away from the center of its lane when it

receives a Change Lateral Offset action.
• Longitudinal distance behavior — Vehicle keeps the specified distance or time gap from the

reference actor when the vehicle receives a Change Longitudinal Distance action.
• Path-following behavior — Vehicle drives along the specified path. If you specify timing data for

one or more waypoints along the path, the vehicle adjusts its speed to reach those waypoints at
the specified times.

Lane-Following Behavior
If you add a vehicle to a scenario and do not specify a path or custom behavior for the vehicle, then
that vehicle drives along the center of its lane in the direction specified by the Travel Direction
attribute of its lane. For more information about how to design a scenario with lane-following
behavior, see “Design Lane Following Scenario” on page 3-2.

When a road ends, the vehicle chooses a lane in the new road that has the same travel direction as its
lane in the current road. This behavior enables the vehicle to make turns into the appropriate lane, as
shown in these images.

The vehicle drives in the right-turn lane toward
an intersection.

The vehicle turns right onto the intersecting road,
continuing its direction of travel.

If there is no successor lane, or if the travel directions of the current lane and the successor lane do
not match, then the vehicle stops upon reaching the end of its current lane. For example, this image
shows a vehicle stopped at the end of a merging lane that does not have a successor lane.

 Built-In Behavior for Vehicles

3-145

At junctions, the vehicle selects the lane that has the smallest change in curvature. For example, at
this T-intersection, the vehicle goes straight instead of making a sharp turn.

Note When you set the Dynamics Type attribute of a Change Speed action to With
Acceleration, you must specify an appropriate sign for the value of the Acceleration attribute. If
the sign of the Acceleration value does not enable the vehicle to achieve the specified target Speed
value, the vehicle ignores the sign.

3 Design and Simulate Scenarios

3-146

Reverse Motion Along Lane

If you set the Relative to attribute of a Change Speed action to Absolute and specify a negative
value for the Speed attribute, the vehicle moves in the reverse direction along the lane when the
Change Speed action activates.

When you set the Relative to attribute of a Change Speed action to Actor, you must select the
Allow Negative Speed attribute to simulate reverse motion of the vehicle. Otherwise the vehicle
remains stationary if its computed speed value is negative.

Limitations

• Vehicles do not check for collisions with other vehicles or with static obstacles.
• If you place a vehicle such that its center is off the road or on a non-drivable lane, then the vehicle

remains stationary during simulation. For example, if a vehicle is on a Biking lane, it remains
stationary.

• Vehicles only consider lane centers while driving. For example, a vehicle can drive on lanes that
are narrower than the width of the vehicle.

• Driving on lanes with an Undirected travel direction is not supported.
• Vehicles ignore the specified Speed Limit attribute of their lane. Instead, each vehicle follows the
specified Speed attribute of the Initialize Speed or Change Speed action.

• If a vehicle, which is traveling in forward direction, is approaching the end of its road when it
receives a negative speed value, the vehicle does not perform a reverse motion if the remaining
length of the road is insufficient for the vehicle to reach a negative speed value using the specified
dynamics. To avoid this condition, adjust the dynamics of the Change Speed action.

Lane-Changing Behavior
The lane-changing behavior enables vehicles to perform the Change Lane action during simulation.
For a vehicle to perform this action, a target lane must exist that satisfies these conditions:

• The target lane is a drivable lane.
• The Travel Direction attribute of a target lane matches the Travel Direction attribute of the

current lane. If the Travel Direction attribute of the current lane is Bidirectional, then the
Travel Direction attribute of the target lane must match the actual travel direction of the vehicle.

If a valid target lane exists, the vehicle transitions from the center of the current lane to the center of
a target lane based on the specified attributes of the Change Lane action. For more information
about how to specify attributes and design a scenario with lane-changing behavior, see “Design Lane
Change Scenario” on page 3-10.

Note To simulate built-in lane-changing behavior, you must not specify a path for the vehicle.
Otherwise, the vehicle ignores the Change Lane action and continues following the specified path.

To perform a Change Lane action relative to an actor, the vehicle first identifies its target lane as the
lane that contains the center of the referenced actor at the instant the target receives the action. The
vehicle then performs its action relative to the identified target lane. This behavior enables a vehicle
to find an appropriate target lane even when the referenced actor is in the middle of a lane change
when the vehicle receives Change Lane action.

 Built-In Behavior for Vehicles

3-147

When the vehicle cannot reach the specified target lane, it searches for the nearest possible valid
lane. If a valid lane exists, then the vehicle performs a Change Lane action. Otherwise, the vehicle
ignores this action and continues driving in the current lane. For example, consider these two
scenarios:

• Change Lane action occurs

A vehicle is traveling in the left-most lane on a three-lane, one-way road. If you specify the target
lane as a lane that is offset from the current lane by three lanes, a drivable target lane does not
exist on this road. In this case, the vehicle considers the drivable lane offset from its current lane
by two lanes, and performs a Change Lane action.

Vehicle Before Change Lane Action Vehicle After Change Lane Action

• Change Lane action does not occur

A vehicle is driving on a two-way road that has only one driving lane for each travel direction. If
you specify a target lane to the right of the current lane, the vehicle does not perform a Change
Lane action.

3 Design and Simulate Scenarios

3-148

If it is not feasible to perform a Change Lane action with the specified dynamics, the vehicle
overrides the specified dynamics and performs the action instantaneously using the Step type of
Dynamics Profile. For example, if you specify to change a lane over a distance that is less than the
lane width, the vehicle ignores the specified dynamics and performs the action instantaneously.

A vehicle can perform a Change Lane action during reverse motion. However, the vehicle does not
complete the Change Lane action if you specify a parallel Change Speed action that forces the
vehicle to change its direction before the Change Lane action completes. For example, if a forward-
moving vehicle simultaneously receives a Change Lane action and a Change Speed action with a
negative speed value, and the vehicle reverses its motion before the Change Lane action completes,
then the vehicle terminates the Change Lane action as soon as the reverse motion starts. The
vehicle continues the reverse motion with the last lateral offset value computed during execution of
the Change Lane action.

Limitations

• Vehicles do not check for collisions with other vehicles or with static obstacles.
• When the specified target lane is offset by two or more lanes from the current lane, the vehicle

sequentially checks whether each intermediate lane is a valid lane or not. If all the intermediate
lanes are valid, the vehicle transitions to the specified target lane. Otherwise the vehicle
transitions to the last valid intermediate lane starting from the current lane. If the intermediate
lane next to the current lane is invalid, the vehicle does not perform the Change Lane action.

If the vehicle cannot transition to the specified target lane, the Change Lane action phase must
have a valid end condition to complete the action. Otherwise, the vehicle cannot perform all the
remaining actions.

• When you specify a target lane relative to an actor that is traveling on an unconnected road
segment, the specified lane change action does not occur, and the vehicle continues traveling in
the current lane. For example, in this image, a white vehicle and a red vehicle are traveling on two
distinct roads that are not connected to each other. For a white vehicle, if you specify a Change
Lane action relative to the red vehicle, the white vehicle ignores this action.

 Built-In Behavior for Vehicles

3-149

• If a vehicle is approaching the end of its road when it receives the Change Lane action, the
vehicle does not perform the action if the remaining length of the road is insufficient for the
vehicle to complete the action over specified distance or time. For example, consider a vehicle is 5
meters away from the end of the road when it receives a Change Lane action that specifies to
reach the target lane over 10 meters. Because the specified distance is greater than the remaining
length of the road, the vehicle does not perform this action.

• If a vehicle is traveling off the road when it receives a Change Lane action, the vehicle does not
perform the action. For example, if you specify a lateral offset value greater the width of the road
for Change Lateral Offset action, the vehicle travels off the road when performing the
Change Lateral Offset action. If the vehicle then receives a Change Lane action, the vehicle
ignores the action and remains stationary until the simulation ends.

• If you set Dynamics Type attribute to With lateral velocity, then Cubic type of Dynamics
Profile is not supported and the vehicle performs a Change Lane action using Linear type of
Dynamics Profile.

• When you specify parallel action phases containing the Change Lateral Offset and Change
Lane actions, the vehicle considers the bottom-most lateral action and ignores all other parallel
lateral actions. For example, if a Change Lane action occurs above a Change Lateral Offset
action in a parallel action phase, then the vehicle ignores the Change Lane action during
simulation.

3 Design and Simulate Scenarios

3-150

Lateral Offset Behavior
The lateral offset behavior enables vehicles to perform a Change Lateral Offset action that shifts
them away from their lane centers during simulation. This enables you to design scenarios in which
vehicles swerve from side to side within their lanes. For more information, see “Design Lane Swerve
Scenario” on page 3-20.

The lateral offset behavior works for both types of Motion behaviors:

• Follow Lane — The Change Lateral Offset action applies a lateral shift to a vehicle such
that it maintains the specified offset from its lane center during simulation.

• Follow Path — The vehicle maintains the specified lateral offset from the defined path of the
vehicle during simulation.

A vehicle maintains the specified offset from its trajectory while traveling until you specify a new
Change Lateral Offset action or a Change Lane action.

When your specified value for the Time attribute is not sufficient to attain the specified Lateral
Offset value, the vehicle overrides your specified dynamics and performs a Change Lateral
Offset action that attains the specified Lateral Offset.

A vehicle can perform a Change Lateral Offset action during reverse motion. However, the
vehicle does not complete the Change Lateral Offset action if you specify a parallel Change
Speed action that forces the vehicle to change its direction before the Change Lateral Offset
completes. For example, if a forward-moving vehicle simultaneously receives a Change Lateral
Offset action and a Change Speed action with a negative speed value, and the vehicle reverses its
motion before the Change Lateral Offset action completes, then the vehicle terminates the
Change Lateral Offset action as soon as the reverse motion starts. The vehicle continues the
reverse motion with the last lateral offset value computed during execution of the Change Lateral
Offset action.

Limitations

• Vehicles do not check for collisions with other vehicles or with static obstacles.
• When you specify parallel action phases containing the Change Lateral Offset and Change

Lane actions, the vehicle considers the bottom-most lateral action and ignores all other parallel
lateral actions. For example, if a Change Lateral Offset action occurs above a Change Lane
action in a parallel action phase, then the vehicle ignores the Change Lateral Offset action
during simulation.

 Built-In Behavior for Vehicles

3-151

• The Change Lateral Offset action does not consider the Travel direction attribute of a lane.
You must specify appropriate lateral offset value to avoid a vehicle traveling in the wrong direction
on two-way roads.

• When you select a vehicle in the scenario canvas and specify a Lateral Offset value from the
Attributes pane, the vehicle ignores your specified value while performing a Change Lateral
Offset action. Instead, the vehicle considers the Lateral Offset value specified for this action
when you define scenario logic.

Lateral Offset Attribute for Initial Vehicle
Placement

Lateral Offset Attribute for Change
Lateral Offset Action

3 Design and Simulate Scenarios

3-152

Longitudinal Distance Behavior
The longitudinal distance behavior enables vehicles to perform a Change Longitudinal Distance
action to maintain the specified longitudinal distance or time gap from other referenced vehicles. For
more information about how to specify attributes and design a scenario with longitudinal distance
behavior, see “Design Overtake Using Longitudinal Distance Condition Scenario” on page 3-44.

Note To simulate built-in longitudinal distance behavior, you must not specify a path for the vehicle.
Otherwise, the vehicle ignores the Change Longitudinal Distance action.

For a vehicle to perform this action, the Reference Actor must satisfy these conditions. Otherwise
the vehicle ignores this action.

• The Reference Actor is traveling in the lane of the vehicle.
• The orientations of the vehicle and Reference Actor actor are the same.

When the Reference Actor satisfies these conditions, the vehicle performs this action and adjusts its
speed to maintain the specified longitudinal distance or time gap from the Reference Actor. If you
configure the Reference Actor actor for reverse motion, the vehicle also travels in the reverse
direction while performing this action.

If you do not specify an end condition for the Change Longitudinal Distance action, then the
vehicle ends the Change Longitudinal Distance action based on the value of the Sampling
Mode parameter:

• At start of action — The vehicle ends the action when it achieves the specified longitudinal
distance or time gap from the Reference Actor.

• Continuous — The vehicle continues following the action after achieving the specified
longitudinal distance or time gap from the Reference Actor. The vehicle ends the action when
one of these events occur:

• The vehicle receives a Change Speed action.

The vehicle receives a new Change Longitudinal Distance action.
• The Reference Actor or the vehicle moves to a different lane.

During simulation, when a vehicle ends the Change Longitudinal Distance action, the vehicle
continues traveling at the last computed longitudinal speed until it receives a Change Speed or a
new Change Longitudinal Distance action.

Limitations

• Vehicles do not check for collisions with other vehicles or with static obstacles.
• When you specify parallel action phases containing the Change Longitudinal Distance and

Change Speed actions, the vehicle considers the bottom-most longitudinal action and ignores all
other parallel longitudinal actions. For example, if a Change Longitudinal Distance action
occurs above a Change Speed action in a parallel action phase, then the vehicle ignores the
Change Longitudinal Distance action during simulation.

 Built-In Behavior for Vehicles

3-153

Path-Following Behavior
The path-following behavior enables vehicles to drive along your specified paths during simulation.
This enables you to design more complex and unique scenarios in which you can specify custom
driving path that can go on- and off-road. For more information, see “Design Path Following Scenario”
on page 3-28.

A vehicle drives along your specified path until it reaches the final waypoint. Upon reaching the final
waypoint, the vehicle remains stationary for the rest of the simulation.

If you specify the Time attribute for one or more waypoints along the path, and set the Relative to
attribute of an Initialize Speed or Change Speed action to Waypoint Time Data, the vehicle
adjusts its speed to reach those waypoints at the specified times when executing that action. The
vehicle automatically calculates the required speed to reach a waypoint based on its Time value. If
you also specify a Speed attribute for a waypoint, the vehicle reaches that waypoint at the specified
time with the specified speed.

If you specify a nonzero value for the Wait Time attribute of the waypoint, the vehicle waits for the
specified amount of time upon reaching that waypoint.

The vehicle starts following the specified Timing Data of waypoints after the corresponding Change
Speed action is triggered. If the vehicle has already crossed one or more waypoints before the action
is triggered, the vehicle ignores the Timing Data for those waypoints.

Reverse Motion Along Path

If you set the Relative to attribute of a Change Speed action to Absolute and specify a negative
value for the Speed attribute, the vehicle moves in the reverse direction along the specified path
when the Change Speed action is triggered.

When you set the Relative to attribute of a Change Speed action to Actor, you must select the
Allow Negative Speed attribute to simulate reverse motion of the vehicle. Otherwise the vehicle
remains stationary if its computed speed value is negative.

3 Design and Simulate Scenarios

3-154

Upon reaching the first waypoint during the reverse motion, the vehicle remains stationary for the
rest of the simulation. If the vehicle encounters a negative speed value at the first waypoint, it does
not perform reverse motion and remains stationary during simulation.

Limitations

• Vehicles do not check for collisions with other vehicles or with static obstacles.
• To get the expected timing behavior at waypoints, the value of the Time attribute for the first

waypoint must be 0. RoadRunner Scenario does not support nonzero value for the Time attribute
of the first waypoint.

• If the specified Timing Data for the next waypoint is unrealistic, the vehicle stops at the current
waypoint and remains stationary for the rest of the simulation. For example, if the Time attribute
of the next waypoint has the same value as that of the current waypoint, the vehicle stops at the
current waypoint.

• If a vehicle, which is traveling in forward direction, is approaching the end of its road when it
receives a negative speed value, the vehicle does not perform a reverse motion if the remaining
length of the road is insufficient for the vehicle to reach to negative speed value using the
specified dynamics. To avoid this condition, adjust the dynamics of the Change Speed action.

• RoadRunner Scenario does not support Timing Data for reverse motion of vehicles.

See Also

Related Examples
• “Design Lane Following Scenario” on page 3-2
• “Design Lane Change Scenario” on page 3-10
• “Design Lane Swerve Scenario” on page 3-20
• “Design Path Following Scenario” on page 3-28
• “Design Overtake Using Longitudinal Distance Condition Scenario” on page 3-44

More About
• “Define Scenario Logic” on page 3-75

 Built-In Behavior for Vehicles

3-155

Specify and Assign Actor Behaviors
In cosimulation, the behavior of any vehicle actor in the simulation can be managed by three
simulation environments: RoadRunner Scenario, Automated Driving Toolbox, or CARLA. Choose a
simulation environment based on the specific goals of your application.

Actor Behavior in RoadRunner
You can specify actor behavior directly in RoadRunner Scenario using the Logic editor, a graphical
interface for defining the logic of a scenario. You can access the graphical Logic editor from the 2D
Editor pane. The scenario logic defined in this editor consists of a series of actions with optional
conditions that trigger those actions. For more information on using the Logic editor, see “Define
Scenario Logic” on page 3-75.

Actor Behavior in MATLAB and Simulink
Automated Driving Toolbox provides a cosimulation framework for simulating scenarios in
RoadRunner Scenario with actors modeled in MATLAB and Simulink. For detailed information on the
blocks, functions, and objects used to specify actor behavior from Automated Driving Toolbox, see
“Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink” (Automated Driving
Toolbox).

Actor Behavior in CARLA
You can also develop actor behavior in the CARLA simulation environment. Using the cosimulation
bridge, you can use actor behaviors from RoadRunner Scenario in a CARLA simulation. For
information on specifying the actor behaviors in CARLA for cosimulation, see “Configure RoadRunner
Scenario Model” on page 6-7.

See Also

More About
• “Define Scenario Logic” on page 3-75
• “Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink” (Automated

Driving Toolbox)
• “Configure RoadRunner Scenario Model” on page 6-7

3 Design and Simulate Scenarios

3-156

Camera Control in RoadRunner Scenario
RoadRunner Scenario enables you to visualize large-scale and small-scale details of a 3D environment

that can span many kilometers or miles. The Simulation Tool in RoadRunner Scenario supports
in-editor playback for visualizing scenarios. The interactive camera types present in the Simulation
Tool enable you to view this large 3D space quickly and effectively. To use the camera options, you
must select the Simulation Tool. This example shows you the fundamentals of camera controls in
the RoadRunner Scenario simulation environment.

Visualize Scenario Simulation using Camera Options
Open a prebuilt scenario, and then use the Simulation Tool to simulate the scenario.

From the File menu, select Open Scenario. Then, select the TrajectoryCutIn scenario, which is
one of the prebuilt scenarios included by default in the Scenarios folder of RoadRunner Scenario.

In this scenario, one vehicle cuts in front of another vehicle. The vehicles follow predefined paths.

On the RoadRunner Scenario toolbar, click the Simulation Tool .

In the Simulation pane, under Camera, select an appropriate Camera View type. The Camera
View drop-down has several camera options to conform to various simulation needs. Each camera
view has associated attributes, which must be set corresponding to the camera view selected. This
table shows the camera view types and their associated attributes.

 Camera Control in RoadRunner Scenario

3-157

Camera View Types Description Attributes
Default editor camera Camera mode used for scene

editing. Returns the view to
default camera when switching
from other camera types.

Simulation playback in Default
editor camera view.

3 Design and Simulate Scenarios

3-158

Camera View Types Description Attributes
Orbit Locks the camera position on to

the selected Actor, allowing
orbital control. Orbital control
includes rotation, zoom in, zoom
out, and pan about the vehicle.

Actor Actor on which
the camera is
positioned
during
simulation.
The camera is
positioned in
the same
direction as
the forward
moving
direction of the
actor.

The Actor
drop-down lists
all the vehicles
in the
scenario.
Select an actor
from the drop-
down.

Lock to Actor
Orientation

Locks the
camera to the
orientation of
the selected
actor. This
ensures that
the camera
rotates and
moves with the
selected actor.
The starting
position is the
center of the
vehicle, but
can be panned
like default
editor camera
with same
controls.

By default, this
option is not
selected.

Simulation playback in Orbit
camera view with the Ego
vehicle selected as the Actor.
The camera is positioned at a

 Camera Control in RoadRunner Scenario

3-159

Camera View Types Description Attributes
spot around the orbit of the Ego
vehicle, the white sedan.

3 Design and Simulate Scenarios

3-160

Camera View Types Description Attributes
Follow Positions the camera behind the

selected actor.
Actor Actor on which

the camera is
positioned
during
simulation.
The camera is
positioned in
the same
direction as
the forward
moving
direction of the
actor.

The Actor
drop-down lists
all the vehicles
in the
scenario.
Select an actor
from the drop-
down.

Distance Follow
distance, in
meters, for the
camera. This
attribute
specifies the
distance
between the
camera and
the back of the
selected actor.

Height Follow height,
in meters, for
the camera.
This attribute
specifies the
height at
which the
camera is
positioned
above the
actor while
following it.

Simulation playback in Follow
camera view with the Ego
vehicle selected as the Actor.
The camera is positioned at a

 Camera Control in RoadRunner Scenario

3-161

Camera View Types Description Attributes
distance of 5.0 meters behind
the vehicle and at a height of
6.0 meters above Ego vehicle,
the white sedan.

3 Design and Simulate Scenarios

3-162

Camera View Types Description Attributes
Front Positions the camera at the

front of the selected actor.
Actor Actor on which

the camera is
positioned
during
simulation.
The camera is
positioned in
the same
direction as
the forward
moving
direction of the
actor.

The Actor
drop-down lists
all the vehicles
in the
scenario.
Select an actor
from the drop-
down.

Simulation playback in Front
camera view with the Ego
vehicle selected as the Actor.
The camera is positioned at the
front of the Ego vehicle, the
white sedan. The red sedan is
ahead of the white sedan.
Hence, it is visible from the
front camera positioned on the
white sedan.

 Camera Control in RoadRunner Scenario

3-163

Camera View Types Description Attributes

Note You can switch between the vehicles in the scenario in Camera View by pressing Tab
keyboard shortcut. To shift backwards between the vehicles, press Shift+Tab keyboard shortcut.

You can switch between the camera types in Camera View by pressing C keyboard shortcut. To shift
backwards between the camera types, press Shift+C keyboard shortcut.

After selecting the Camera View, under Simulation Controls click Play to simulate the scenario.

The scenario locks for editing and the simulation plays back in the scenario editing canvas. You can
visualize the scenario based on the Camera View selected. For more details on simulating scenarios,
see Simulation Tool.

See Also
Simulation Tool | Scenario Edit Tool

Related Examples
• Simulation Configuration
• “Explore and Simulate a Simple Scenario” on page 1-30
• “Camera Control in RoadRunner”

3 Design and Simulate Scenarios

3-164

Programmatic Scenario Interfaces

• “Generate Scenario Variations Using gRPC API” on page 4-2
• “Reuse Scenarios in Multiple Scenes Using gRPC API” on page 4-13
• “Export Multiple Scenarios Using gRPC API” on page 4-20
• “Simulate a RoadRunner Scenario Using MATLAB Functions” on page 4-24

4

Generate Scenario Variations Using gRPC API
This example shows how to programmatically vary attributes of a scenario and export the scenario
variations to the ASAM OpenSCENARIO 1.0 file format. By taking a single scenario and varying
certain aspects of it programmatically, you can quickly generate hundreds or even thousands of
scenarios on which to test autonomous vehicle algorithms.

How the RoadRunner gRPC API Works
RoadRunner provides an API service for importing and exporting scenes and scenarios
programmatically. This API is built using the open-source, language-neutral gRPC framework, which
enables you to make remote procedure calls (RPCs) to the RoadRunner server to control the
application programmatically. For more background, see “Control RoadRunner Programmatically
Using gRPC API”.

You can compile the RoadRunner API service into any programming language supported by gRPC and
write clients to remotely control RoadRunner in that language. RoadRunner also provides a
precompiled version of this API as a command-line tool. This example uses this precompiled helper
command to perform these operations.

Note This example primarily uses Windows commands and file paths to call the API, but this API also
works on Linux.

Open RoadRunner and Start API Server
To use the command-line API to control RoadRunner remotely, you must first start the API server on
an IP network port. Start the API server by opening a RoadRunner project, which you can do
programmatically by using the AppRoadRunner executable file.

From the command line, navigate to the folder that contains the AppRoadRunner executable file. For
example, this code shows the default installation location of the executable file on Windows:

cd "C:\Program Files\RoadRunner R2023a\bin\win64"

This code shows the default installation location of the executable file on Linux:

cd /usr/local/RoadRunner_R2023a/bin/glnxa64

Open RoadRunner to an existing project and set the port over which to run the server. Make these
updates to the code:

• Replace the projectPath option value, C:\RR\MyProject, with a path to a valid RoadRunner
project on your system. If you do not have an existing project, open RoadRunner and create one
interactively. See “RoadRunner Project and Scene System”.

• (Optional) Replace the apiPort option value, 54321, with an IP network port number of your
choice, between 1024 and 65535, inclusive. If you omit the apiPort option, then RoadRunner
opens to its default port of 35707.

AppRoadRunner --projectPath="C:\RR\MyProject" --apiPort=54321

RoadRunner opens to a new scene in the specified project.

4 Programmatic Scenario Interfaces

4-2

The Output pane displays the port on which the RoadRunner API server is running.

Switch to scenario editing mode. In the top-right corner of RoadRunner, select Scene Editing, then
Scenario Editing. The Output pane displays an additional message indicating that the Scenario API
server is running on its default port. This server is for cosimulating scenarios with MATLAB and
Simulink, or with external simulators such as CARLA. The commands used in this example do not
communicate with this server.

Load Scenario
Load the scenario that you want to create variations of. In this example, use the
TrajectoryCutIn.rrscenario file, which is one of the default scenarios included with
RoadRunner projects. From the File menu, select Open Scenario. Then, in the Scenarios folder,
select TrajectoryCutIn.rrscenario.

In this scenario, one vehicle cuts into the same lane as another vehicle after a specified distance.

Preview this scenario by clicking the Simulation Tool button , and then clicking Play. In the
Logic editor, click the Match Lead: Ego box and in the Attributes pane, set the Acceleration to
3.50 m/s2.

 Generate Scenario Variations Using gRPC API

4-3

Define Scenario Variables
Using the scenario editing canvas, interactively define variables for the scenario attributes that you
want to change programmatically.

Define Initial Speed Variable

Define a variable for the initial speed of the red sedan.

1
Click the Scenario Edit Tool button to enable logic editing.

2 In the Logic editor, click the initialization box for the red Sedan vehicle.

The Attributes pane contains attributes that define the initial actions of the vehicle at the start
of simulation. For example, the red sedan has an initial Speed value of 17.88 meters per second.

3 Create a variable for the initial speed of the vehicle. In the Attributes pane, right-click the
Speed attribute name, and then click Create Variable.

RoadRunner switches focus to the Variables table, which now includes the
ChangeSpeed_TargetSpeed variable and its value.

4 Programmatic Scenario Interfaces

4-4

4 In the Name field, rename the variable to Red Sedan Initial Speed to provide more context
for the variable.

Define Trigger Distance Variable

Define a variable for the waypoint in the path of the red sedan that triggers the white car, Sedan, to
change lanes.

1

In the Logic editor, select the node for the Distance To Point condition for Sedan.

The scenario editor displays a blue sphere around a point near the beginning of the red sedan
path. During simulation, when the red sedan enters this sphere, the white sedan begins its path.
The Attributes pane displays attributes for changing this Distance to Point condition, such as
the height of the point above the ground (Height Offset) and the radius around the point
(Threshold).

2 Select the path for the red sedan, and then select the path waypoint from which to offset the blue
sphere.

The Attributes pane displays attributes for the point. For example, under Offset, the Forward
Offset attribute specifies the distance, in meters, by which the point is offset from the vehicle.

3 Create a variable for the forward offset. In the Attributes pane, under Forward Offset, right-
click the Offset attribute name, and then click Create Variable.

 Generate Scenario Variations Using gRPC API

4-5

RoadRunner switches focus to the Variables table and displays a new
{AttributeID}_FowardOffset variable and its value of 10 meters in the table.

4 In the Name field, rename the variable to Trigger Distance.

Define Vehicle Color and Type Variables

Define variables for the color and type of the white car, Sedan.

1 In the scenario editor, select the white car.

2 In the Attributes pane, right-click the Color attribute name and click Create Variable.
RoadRunner adds a Sedan_Color variable with a value of #ffffff (white) to the Variables
table.

3 Right-click the Vehicle Type attribute name and click Create Variable. RoadRunner adds a
Sedan_AssetRef variable to the Variables table. The variable value is the path to the asset that
RoadRunner uses to render the vehicle.

Modify Variables Programmatically
In the scenario editor, you can modify the variable values by updating their values in the Variables
table. Alternatively, you can modify the variables you defined by using the RoadRunner RPC methods.
The inputs for these methods are defined in the roadrunner_service_messages.proto protobuf
file located in this folder:
RRInstallFolder/bin/platform/Proto/mathworks/roadrunner

where:

• RRInstallFolder is your RoadRunner installation location.
• platform is your system platform (win64 for Windows or glnxa64 for Linux).

To call these RPC methods, in this example, use the CmdRoadRunnerApi helper command. This
helper command is located in the same folder as the AppRoadRunner executable file.

4 Programmatic Scenario Interfaces

4-6

Increase the initial speed of the red Sedan vehicle to 50 m/s by using the SetScenarioVariable
method. RoadRunner updates the corresponding Red Sedan Initial Speed value in the
Variables table. In the serverAddress option, replace the port number with the apiPort value you
specified when opening RoadRunner. If you used the default port, omit the serverAddress option.

CmdRoadRunnerApi "SetScenarioVariable(name='Red Sedan Initial Speed' value='50')" ^
--serverAddress=localhost:54321

Simulate the scenario by using the SimulateScenario method. Slow the pacing down to 1/4 the
speed of the simulation to observe the effects of the variable change. The red sedan now collides with
the sedan.

CmdRoadRunnerApi "SimulateScenario(pacing.value='0.25')" ^
--serverAddress=localhost:54321

Reset the initial speed value to 17.88, increase the trigger distance to 50 meters, and rerun the
simulation with an end time of 10 seconds. With the trigger distance farther out, the sedan cuts into
the other lane behind the red sedan instead of in front of it.

CmdRoadRunnerApi "SetScenarioVariable(name='Red Sedan Initial Speed' value='17.88')" ^
--serverAddress=localhost:54321
CmdRoadRunnerApi "SetScenarioVariable(name='Trigger Distance' value='50')" ^
--serverAddress=localhost:54321
CmdRoadRunnerApi "SimulateScenario(pacing.value='0.25' simulation_end_time.value='10')" ^
--serverAddress=localhost:54321

Modify the Sedan_Color and Sedan_AssetRef variables to change the white car to a blue pickup
truck. Switch back to the Scenario Edit Tool and observe the changes to the vehicle in the scenario
editor.

CmdRoadRunnerApi "SetScenarioVariable(name='Sedan_Color' value='blue')" ^
--serverAddress=localhost:54321
CmdRoadRunnerApi "SetScenarioVariable(name='Sedan_AssetRef' value='<PROJECT>/Assets/Vehicles/PickupTruck.fbx_rrx')" ^
--serverAddress=localhost:54321

 Generate Scenario Variations Using gRPC API

4-7

Restore the original conditions of the scenario and save the scenario as
TrajectoryCutInWithVariables by using the SaveScenario method. By default, this method
saves the scenario to the Scenarios folder of the current project.

CmdRoadRunnerApi "SetScenarioVariable(name=Red Sedan Initial Speed' value='17.88')" ^
--serverAddress=localhost:54321
CmdRoadRunnerApi "SetScenarioVariable(name='Sedan_Color' value='white')" ^
--serverAddress=localhost:54321
CmdRoadRunnerApi "SetScenarioVariable(name='Sedan_AssetRef' value='<PROJECT>/Assets/Vehicles/Sedan.fbx')" ^
--serverAddress=localhost:54321
CmdRoadRunnerApi "SaveScenario(file_path='TrajectoryCutInWithVariables')" ^
--serverAddress=localhost:54321

Export Single Scenario
Export the scenario to the ASAM OpenSCENARIO 1.0 format by using the Export method. For the
exported file name, specify the same name as the scene, but with the extension .xosc. By default,
RoadRunner exports the scene to the Exports folder of the current project.

CmdRoadRunnerApi "Export(file_path='TrajectoryCutInWithVariables.xosc' format_name='openscenario')" ^
--serverAddress=localhost:54321

Navigate to the Exports folder of your project and verify that it contains the ASAM OpenSCENARIO
file, as well as the associated GeoJSON file, OpenSceneGraph file, and ASAM OpenDRIVE file.

cd "C:\RR\MyProject\Exports"
dir

TrajectoryCutInWithVariables.geojson
TrajectoryCutInWithVariables.osgb
TrajectoryCutInWithVariables.xodr
TrajectoryCutInWithVariables.xosc

Note The variables that you create are not included in the exported ASAM OpenSCENARIO file. They
apply only during scenario editing and use of the API.

Export Scenario Variations
To export variations of a scenario, you can write a script that calls the CmdRoadRunnerApi command
in a loop.

Copy the script for your platform to a file named scenario_variations.bat (Windows) or
scenario_variations.bash (Linux) and modify the values for these variables:

4 Programmatic Scenario Interfaces

4-8

• RRPATH — Update to the bin/platform folder path of your local RoadRunner installation.
• PROJECT — Update to the path of your RoadRunner project.
• SCENENAME — Update to the path for your scene.
• SCENARIONAME — Update to the path for your scenario.
• VEHICLESPEEDVARIABLE — Update to the name of the variable that sets the initial speed of the

vehicle.
• PORT — Update to the IP network port that you want to connect to.

scenario_variations.bat (Windows)
@echo off
SetLocal EnableDelayedExpansion
REM Generate variations of cut-in scenario where a vehicle has varying speeds.

REM Set file paths, the variable name, and the port number.
set RRPATH=C:\Program Files\RoadRunner R2023a\bin\win64&
set PROJECT=C:\RR\MyProject&
set SCENENAME=ScenarioBasic&
set SCENARIONAME=TrajectoryCutInWithVariables&
set VEHICLESPEEDVARIABLE=Red Sedan Initial Speed&
set PORT=54321&

REM Open RoadRunner.
cd %RRPATH%
Start "" AppRoadRunner --projectPath=%PROJECT% --apiPort=%PORT%
timeout /t 2 /nobreak>nul& REM Wait for API server to start.

REM Load scene.
CmdRoadRunnerApi "LoadScene(file_path='%SCENENAME%')" --serverAddress=localhost:%PORT%
timeout /t 2 /nobreak>nul& REM Wait for scene to load

REM Load scenario.
CmdRoadRunnerApi "LoadScenario(file_path='%SCENARIONAME%' keep_current_scene='true')" --serverAddress=localhost:%PORT%

timeout /t 2 /nobreak>nul& REM Wait for scenario to load

REM Set initial speed, maximum speed, and speed increment.
set /A "SPEED = 10"
set /A "MAXSPEED = 50"
set /A "INCREMENT = 5"

REM Export initial scenario to a subfolder of "Exports" folder in current project.
set EXPORTPATHBASE=%PROJECT%\Exports\%SCENARIONAME%_%SCENENAME%_%SPEED%ms\%SCENARIONAME%_%SCENENAME%_%SPEED%ms
CmdRoadRunnerApi "Export(file_path='%EXPORTPATHBASE%.xosc' format_name='openscenario')" --serverAddress=localhost:!PORT!

REM Move OpenSceneGraph file for the scene up one level and rename it so it can be reused with other scenarios.
move %EXPORTPATHBASE%.osgb %PROJECT%\Exports\%SCENENAME%.osgb
set OSGPATH=%PROJECT%\Exports\%SCENENAME%.osgb

REM Export scenarios with varying speeds. Each scenario is exported to a separate folder.
:while
if %SPEED% lss %MAXSPEED% (
 set /A "SPEED = SPEED + INCREMENT"
 CmdRoadRunnerApi "SetScenarioVariable(name='!VEHICLESPEEDVARIABLE!' value='!SPEED!')" --serverAddress=localhost:!PORT!
 set EXPORTPATH=!SCENARIONAME!_!SCENENAME!_!SPEED!ms\!SCENARIONAME!_!SCENENAME!_!SPEED!ms.xosc
 set OSGSETTINGS=open_scenario_settings.path_to_existing_scene_graph='!OSGPATH!'
 CmdRoadRunnerApi "Export(file_path='!EXPORTPATH!' format_name='openscenario' !OSGSETTINGS!)" --serverAddress=localhost:!PORT!
 goto :while
)

REM Exit RoadRunner
CmdRoadRunnerApi "Exit()" --serverAddress=localhost:%PORT%

 Generate Scenario Variations Using gRPC API

4-9

scenario_variations.bash (Linux)
#!/bin/bash
Generate variations of cut-in scenario where a vehicle has varying speeds.

Set paths to RoadRunner, project, scene, and scenario, and set variable name.
RRPATH="/usr/local/RoadRunner_R2023a/bin/glnxa64"
PROJECT="local/RR/MyProject"
SCENENAME="ScenarioBasic"
SCENARIONAME="TrajectoryCutInWithVariables"
VEHICLESPEEDVARIABLE="Read Sedan Initial Speed"
PORT=54321

Open RoadRunner.
cd "$RRPATH"
./AppRoadRunner --projectPath="$PROJECT" --apiPort="$PORT" &
sleep 2 # Wait for API server to start.

Load scene.
./CmdRoadRunnerApi "LoadScene(file_path='$SCENENAME')" --serverAddress=localhost:$PORT
sleep 2 # Wait for scene to load.

Load scenario.
./CmdRoadRunnerApi "LoadScenario(file_path='$SCENARIONAME' keep_current_scene='true')" --serverAddress=localhost:$PORT
sleep 2 # Wait for scenario to load.

Set initial speed, maximum speed, and speed increment.
SPEED=10
MAXSPEED=50
INCREMENT=5

Export initial scenario to a subfolder of "Exports" folder in current project.
EXPORTPATHBASE="$PROJECT"/Exports/"$SCENARIONAME"_"$SCENENAME"_"$SPEED"ms/"$SCENARIONAME"_"$SCENENAME"_"$SPEED"ms
./CmdRoadRunnerApi "Export(file_path='$EXPORTPATHBASE.xosc' format_name='openscenario')" --serverAddress=localhost:$PORT

Move OpenSceneGraph file for the scene up one level and rename it so it can be reused with other scenarios.
mv "$EXPORTPATHBASE".osgb "$PROJECT"/Exports/"$SCENENAME".osgb
OSGPATH="$PROJECT"/Exports/"$SCENENAME".osgb

Export scenarios with varying speeds. Each scenario is exported to a separate folder.
while [$SPEED -lt $MAXSPEED]
do
 let SPEED+=INCREMENT
 ./CmdRoadRunnerApi "SetScenarioVariable(name='$VEHICLESPEEDVARIABLE' value='$SPEED')" --serverAddress=localhost:$PORT
 EXPORTPATH="$SCENARIONAME"_"$SCENENAME"_"$SPEED"ms/"$SCENARIONAME"_"$SCENENAME"_"$SPEED"ms.xosc
 ./CmdRoadRunnerApi "Export(file_path='$EXPORTPATH' format_name='openscenario' \
 open_scenario_settings.path_to_existing_scene_graph='$OSGPATH')" --serverAddress=localhost:$PORT
done

Exit RoadRunner.
./CmdRoadRunnerApi "Exit()" --serverAddress=localhost:$PORT

This script performs these actions:

1 Opens RoadRunner to a project and starts the RoadRunner API server.
2 Loads the scene and scenario.
3 Varies the initial speed variable for the vehicle and exports the scenario to ASAM

OpenSCENARIO 1.0. Because the same scene is used for each scenario, the script reuses the
OpenSceneGraph file generated by the first export to reduce export time.

4 Exits RoadRunner and shuts down the RoadRunner server.

Close any open instances of RoadRunner and call this script from the command line. For example, if
you used the .bat script, then call this command from a Windows command prompt.

4 Programmatic Scenario Interfaces

4-10

Note If you receive Permission Denied errors when running this script on Windows, you might
need to run this script as an administrator. Right-click the script in File Explorer and select Run as
administrator.

scenario_variations

To verify that the script exported the scenarios, navigate to the Exports folder of the specified
project and list the contents of the folder. For example, if you specified a project at path "C:\RR
\MyProject", run these commands. The folder contains subfolders for each scenario variation and
the OpenSceneGraph file for the scene.

cd "C:\RR\MyProject\Exports"
dir

ScenarioBasic.osgb
TrajectoryCutInWithVariables_ScenarioBasic_10ms
TrajectoryCutInWithVariables_ScenarioBasic_15ms
TrajectoryCutInWithVariables_ScenarioBasic_20ms
TrajectoryCutInWithVariables_ScenarioBasic_25ms
TrajectoryCutInWithVariables_ScenarioBasic_30ms
TrajectoryCutInWithVariables_ScenarioBasic_35ms
TrajectoryCutInWithVariables_ScenarioBasic_40ms
TrajectoryCutInWithVariables_ScenarioBasic_45ms
TrajectoryCutInWithVariables_ScenarioBasic_50ms

Navigate to one of the scenario folders to verify that it contains the exported GeoJSON file, ASAM
OpenDRIVE file, and ASAM OpenSCENARIO file.

cd TrajectoryCutInWithVariables_ScenarioBasic_10ms
dir

TrajectoryCutInWithVariables_ScenarioBasic_10ms.geojson
TrajectoryCutInWithVariables_ScenarioBasic_10ms.xodr
TrajectoryCutInWithVariables_ScenarioBasic_10ms.xosc

Extend Scenario Variation Options
To extend this script further, you can:

• Vary the Trigger Distance variable instead of the initial speed variable, and export variations
based on when the vehicle begins its cut-in maneuver.

• Vary the Type and Color variables to export scenarios using various vehicles.
• Vary combinations of these variables, or create new variables, to export multiple permutations of

the scenario.

For additional flexibility in using the API, you can also compile the protocol buffer (protobuf) files that
define the API into your desired programming language. You can then write client applications in
those languages. For more details on compiling protobuf files and writing clients, see “Compile
Protocol Buffers for RoadRunner gRPC API”.

See Also
AppRoadRunner | LoadScenario | SetScenarioVariable | SimulateScenario | Export

 Generate Scenario Variations Using gRPC API

4-11

Related Examples
• “Control RoadRunner Programmatically Using gRPC API”
• “Reuse Scenarios in Multiple Scenes Using gRPC API” on page 4-13
• “Export Multiple Scenarios Using gRPC API” on page 4-20

4 Programmatic Scenario Interfaces

4-12

Reuse Scenarios in Multiple Scenes Using gRPC API
This example shows how to programmatically load scenarios into different scenes and export the
scene and scenario combinations to the ASAM OpenSCENARIO 1.0 file format. By loading a scenario
into multiple scenes, you can test how your driving algorithm handles specific driving scenarios under
varying conditions.

How the RoadRunner gRPC API Works
RoadRunner provides an API service for importing and exporting scenes and scenarios
programmatically. This API is built using the open-source, language-neutral gRPC framework, which
enables you to make remote procedure calls (RPCs) to the RoadRunner server to control the
application programmatically. For more background, see “Control RoadRunner Programmatically
Using gRPC API”.

You can compile the RoadRunner API service into any programming language supported by gRPC and
write clients to remotely control RoadRunner in that language. RoadRunner also provides a
precompiled version of this API as a command-line tool. This example uses this precompiled helper
command to perform these operations.

Note This example primarily uses Windows commands and file paths to call the API, but this API also
works on Linux.

Open RoadRunner and Start API Server
To use the command-line API to control RoadRunner remotely, you must first start the API server on
an IP network port. Start the API server by opening a RoadRunner project, which you can do
programmatically by using the AppRoadRunner executable file.

From the command line, navigate to the folder that contains the AppRoadRunner executable file. For
example, this code shows the default installation location of the executable file on Windows:

cd "C:\Program Files\RoadRunner R2023a\bin\win64"

This code shows the default installation location of the executable file on Linux:

cd /usr/local/RoadRunner_R2023a/bin/glnxa64

Open RoadRunner to an existing project and set the port over which to run the server. Make these
updates to the code:

• Replace the projectPath option value, C:\RR\MyProject, with a path to a valid RoadRunner
project on your system. If you do not have an existing project, open RoadRunner and create one
interactively. See “RoadRunner Project and Scene System”.

• (Optional) Replace the apiPort option value, 54321, with an IP network port number of your
choice, between 1024 and 65535, inclusive. If you omit the apiPort option, then RoadRunner
opens to its default port of 35707.

AppRoadRunner --projectPath="C:\RR\MyProject" --apiPort=54321

RoadRunner opens to a new scene in the specified project.

 Reuse Scenarios in Multiple Scenes Using gRPC API

4-13

The Output pane displays the port on which the RoadRunner API server is running.

Switch to scenario editing mode. In the top-right corner of RoadRunner, select Scene Editing, then
Scenario Editing. The Output pane displays an additional message indicating that the Scenario API
server is running on its default port. This server is for cosimulating scenarios with MATLAB and
Simulink, or with external simulators such as CARLA. The commands used in this example do not
communicate with this server.

Load and Simulate Scenario
Load the TrajectoryCutIn scenario, which is one of the sample scenarios included by default in
the Scenarios folder of RoadRunner projects. To load the scenario, use the CmdRoadRunnerApi
helper command. This command is in the same folder as the AppRoadRunner executable file.

Call the LoadScenario RPC method using this command. In the serverAddress option, replace
the port number with the apiPort value you specified when opening RoadRunner. If you used the
default port, omit the serverAddress option.

CmdRoadRunnerApi "LoadScenario(file_path='TrajectoryCutIn')" --serverAddress=localhost:54321

The scenario loads into the default ScenarioBasic scene, because TrajectoryCutIn was saved
with this scene.

4 Programmatic Scenario Interfaces

4-14

In this scenario, one vehicle cuts into the same lane as another vehicle after a specified distance.
Simulate this scenario by using the SimulateScenario method. Slow down simulation pacing to 1/2
the speed to better observe the scenario.

CmdRoadRunnerApi "SimulateScenario(pacing.value='0.5')" --serverAddress=localhost:54321

Load Scenario into Different Scene
Load the TrajectoryCutIn scenario into a different scene. First, load the SanAntonio scene,
which is another of the default scenes included with RoadRunner projects.

CmdRoadRunnerApi "LoadScene(file_path='SanAntonio')" --serverAddress=localhost:54321

 Reuse Scenarios in Multiple Scenes Using gRPC API

4-15

Load the TrajectoryCutIn scenario into this scene.

CmdRoadRunnerApi "LoadScenario(file_path='TrajectoryCutIn' keep_current_scene='true')" ^
--serverAddress=localhost:54321

Note When you load a scenario into a new scene, that scene must contain a road anchor with the
same name as the parent anchor of the scenario actors. For more details on working with road
anchors, see “Scenario Anchoring System” on page 3-118.

The ScenarioBasic and SanAntonio scene both have a road anchor named ScenarioStart. In
both scenes, the scenario is located relative to this anchor. If you load this scenario into a scene that
does not have this anchor, then RoadRunner positions the scenario relative to the scene origin, and

4 Programmatic Scenario Interfaces

4-16

the scenario might not look as expected. To add a road anchor to a scene, use the Road Anchor Tool
in RoadRunner.

Simulate the scenario. The cut-in takes place in the new scene.

CmdRoadRunnerApi "SimulateScenario(pacing.value='0.5')" --serverAddress=localhost:54321

Export Scenario from Multiple Scenes
To export a scenario from all scenes in the current project, you can write a script that calls the
CmdRoadRunnerApi command in a loop.

Copy the script for your platform to a file named reuse_scenario.bat (Windows) or
reuse_scenario.bash (Linux) and modify these variables:

• RRPATH — Update to the bin/platform folder path of your local RoadRunner installation (win64
for Windows or glnxa64 for Linux).

• PROJECT — Update to the path of your RoadRunner project.
• SCENARIONAME — Update to the path for your scenario.
• PORT — Update to the IP network port that you want to connect to.

Note To use this script, all scenes in the project must include a road anchor with the same name and
the scenario must be attached to that road anchor.

 Reuse Scenarios in Multiple Scenes Using gRPC API

4-17

reuse_scenario.bat (Windows)
@echo off
SetLocal EnableDelayedExpansion
REM Export scenario from all scenes in project.

set RRPATH=C:\Program Files\RoadRunner R2023a\bin\win64&
set PROJECT=C:\RR\MyProject&
set SCENARIONAME=TrajectoryCutIn&
set PORT=54321&

REM Open RoadRunner.
cd %RRPATH%
Start "" AppRoadRunner --projectPath="%PROJECT%" --apiPort=%PORT%
timeout /t 2 /nobreak>nul& REM Wait for API server to start.

REM Load scenes from "Scenes" folder and export to "Exports" folder.
for %%F in (%PROJECT%\Scenes*.rrscene) do (
 set SCENENAME=%%~nF
 CmdRoadRunnerApi "LoadScene(file_path='%%F')" --serverAddress=localhost:!PORT!
 CmdRoadRunnerApi "LoadScenario(file_path='!SCENARIONAME!' keep_current_scene='true')" --serverAddress=localhost:!PORT!
 set EXPORTPATH=!PROJECT!\Exports\!SCENENAME!_!SCENARIONAME!.xosc
 CmdRoadRunnerApi "Export(file_path='!EXPORTPATH!' format_name='OpenSCENARIO')" --serverAddress=localhost:!PORT!
)

REM Exit RoadRunner
CmdRoadRunnerApi "Exit()" --serverAddress=localhost:!PORT!

reuse_scenario.bash (Linux)
#!/bin/bash
Export scenario from all scenes in project.

RRPATH="/usr/local/RoadRunner_R2023a/bin/glnxa64"
PROJECT="C:/RR/MyProject"
SCENARIONAME=TrajectoryCutIn
PORT=54321

Open RoadRunner.
cd "$RRPATH"
./AppRoadRunner --projectPath="$PROJECT" --apiPort="$PORT" &
sleep 2 # Wait for API server to start

Load scenes from "Scenes" folder and export to "Exports" folder.
for SCENE in $PROJECT/Scenes/*.rrscene
do
 SCENENAME=$(basename $SCENE .rrscene)
 ./CmdRoadRunnerApi "LoadScene(file_path='$SCENENAME')" --serverAddress=localhost:$PORT
 ./CmdRoadRunnerApi "LoadScenario(file_path='$SCENARIONAME' keep_current_scene='true')" --serverAddress=localhost:$PORT
 EXPORTPATH="$PROJECT"/Exports/"$SCENENAME"_"$SCENARIONAME".xosc
 ./CmdRoadRunnerApi "Export(file_path='$EXPORTPATH' format_name='OpenSCENARIO')" --serverAddress=localhost:$PORT
done

Exit RoadRunner.
./CmdRoadRunnerApi "Exit()" --serverAddress=localhost:$PORT

This script performs these actions:

1 Opens RoadRunner to a project and starts the RoadRunner API server.
2 Loads each scene from the Scenes folder of the project.
3 Loads the scenario into each scene by setting the keep_current_scene option to true.
4 Exports each scene and scenario combination to ASAM OpenSCENARIO 1.0.
5 Exits RoadRunner and shuts down the RoadRunner server.

Call this script from the command line. For example, if you used the .bat script, then call this
command from a Windows command prompt.

4 Programmatic Scenario Interfaces

4-18

Note If you receive Permission Denied errors when running this script on Windows, you might
need to run this script as an administrator. Right-click the script in File Explorer and select Run as
administrator.

reuse_scenario

To verify that the script exported the scenarios, navigate to the Exports folder of the specified
project and list the contents of the folder. For example, if you specified a project at path "C:\RR
\MyProject", run these commands.

cd "C:\RR\MyProject\Exports"
dir

The folder lists all the exported scenarios and associated files. For example, if you exported the
TrajectoryCutIn scenario with the SanAntonio and ScenarioBasic scenes, then your Exports
folder contains these files.
SanAntonio_TrajectoryCutIn.geojson
SanAntonio_TrajectoryCutIn.osgb
SanAntonio_TrajectoryCutIn.xodr
SanAntonio_TrajectoryCutIn.xosc
ScenarioBasic_TrajectoryCutIn.geojson
ScenarioBasic_TrajectoryCutIn.osgb
ScenarioBasic_TrajectoryCutIn.xodr
ScenarioBasic_TrajectoryCutIn.xosc

Extend Scenario Reuse Options
To customize the script further, you can specify nondefault export settings. For more details on these
settings, see the Export RPC method. You can also relocate a scenario within a scene
programmatically by creating a variable for the Distance attribute of the road anchor and varying it
programmatically. For more details, see “Relocate Scenarios” on page 3-134.

For additional flexibility in using the API, you can also compile the protocol buffer (protobuf) files that
define the API into your desired programming language. You can then write client applications in
those languages. For more details on compiling protobuf files and writing clients, see “Compile
Protocol Buffers for RoadRunner gRPC API”.

See Also
AppRoadRunner | LoadScene | LoadScenario | SimulateScenario | Export

Related Examples
• “Control RoadRunner Programmatically Using gRPC API”
• “Generate Scenario Variations Using gRPC API” on page 4-2
• “Export Multiple Scenarios Using gRPC API” on page 4-20

 Reuse Scenarios in Multiple Scenes Using gRPC API

4-19

Export Multiple Scenarios Using gRPC API
This example shows how to bulk-export scenarios in a RoadRunner project to one of the file formats
supported by RoadRunner. In this example, you export scenes to the ASAM OpenSCENARIO 1.0 file
format using command-line operations.

How the RoadRunner gRPC API Works
RoadRunner provides an API service for importing and exporting scenes and scenarios
programmatically. This API is built using the open-source, language-neutral gRPC framework, which
enables you to make remote procedure calls (RPCs) to the RoadRunner server to control the
application programmatically. For more background, see “Control RoadRunner Programmatically
Using gRPC API”.

You can compile the RoadRunner API service into any programming language supported by gRPC and
write clients to remotely control RoadRunner in that language. RoadRunner also provides a
precompiled version of this API as a command-line tool. This example uses this precompiled helper
command to perform these operations.

Note This example primarily uses Windows commands and file paths to call the API, but this API also
works on Linux.

Open RoadRunner and Start API Server
To use the command-line API to control RoadRunner remotely, you must first start the API server on
an IP network port. Start the API server by opening a RoadRunner project, which you can do
programmatically by using the AppRoadRunner executable file.

From the command line, navigate to the folder that contains the AppRoadRunner executable file. For
example, this code shows the default installation location of the executable file on Windows:

cd "C:\Program Files\RoadRunner R2023a\bin\win64"

This code shows the default installation location of the executable file on Linux:

cd /usr/local/RoadRunner_R2023a/bin/glnxa64

Open RoadRunner to an existing project and set the port over which to run the server. Make these
updates to the code:

• Replace the projectPath option value, C:\RR\MyProject, with a path to a valid RoadRunner
project on your system. If you do not have an existing project, open RoadRunner and create one
interactively. See “RoadRunner Project and Scene System”.

• (Optional) Replace the apiPort option value, 54321, with an IP network port number of your
choice, between 1024 and 65535, inclusive. If you omit the apiPort option, then RoadRunner
opens to its default port of 35707.

AppRoadRunner --projectPath="C:\RR\MyProject" --apiPort=54321

RoadRunner opens to a new scene in the specified project.

4 Programmatic Scenario Interfaces

4-20

The Output pane displays the port on which the RoadRunner API server is running.

Switch to scenario editing mode. In the top-right corner of RoadRunner, select Scene Editing, then
Scenario Editing. The Output pane displays an additional message indicating that the Scenario API
server is running on its default port. This server is for cosimulating scenarios with MATLAB and
Simulink, or with external simulators such as CARLA. The commands used in this example do not
communicate with this server.

Export Single Scenario
Preview the programmatic operations by exporting one scene from the current project to ASAM
OpenSCENARIO 1.0. To perform these operations, use the CmdRoadRunnerApi helper command.
This helper command is located in the same folder as the AppRoadRunner executable file.

Load the TrajectoryCutIn scenario by using the LoadScenario RPC method. This scene is
included by default in the Scenarios folder of RoadRunner projects. In the serverAddress option,
replace the port number with the apiPort value you specified when opening RoadRunner. If you
used the default port, omit the serverAddress option.

CmdRoadRunnerApi "LoadScenario(file_path='TrajectoryCutIn')" --serverAddress=localhost:54321

Export Multiple Scenarios
To export all scenarios in the current project, you can write a script that calls the
CmdRoadRunnerApi command in a loop.

Copy the script for your platform to a file named bulk_openscenario_export.bat (Windows) or
bulk_openscenario_export.bash (Linux) and modify these variables:

• RRPATH — Update to the bin/platform folder path of your local RoadRunner installation (win64
for Windows or glnxa64 for Linux).

• PROJECT — Update to the path of your RoadRunner project.

 Export Multiple Scenarios Using gRPC API

4-21

• PORT — Update to the IP network port that you want to connect to.

bulk_openscenario_export.bat (Windows)
@echo off
SetLocal EnableDelayedExpansion
REM Export all RoadRunner scenes in project to ASAM OpenDRIVE.

set RRPATH=C:\Program Files\RoadRunner R2023a\bin\win64&
set PROJECT=C:\RR\MyProject&
set PORT=54321&

REM Open RoadRunner.
cd %RRPATH%
Start "" AppRoadRunner --projectPath="%PROJECT%" --apiPort=%PORT%
timeout /t 1 /nobreak>nul& REM Wait for API server to start.

REM Load scenarios from "Scenarios" folder and export to "Exports" folder.
for %%F in (%PROJECT%\Scenarios*.rrscenario) do (
 set SCENARIONAME=%%~nF
 set EXPORTPATH=!PROJECT!\Exports\!SCENARIONAME!.xodr
 CmdRoadRunnerApi "LoadScenario(file_path='%%F')" --serverAddress=localhost:!PORT!
 CmdRoadRunnerApi "Export(file_path='!EXPORTPATH!' format_name='OpenSCENARIO')" --serverAddress=localhost:!PORT!
)

REM Exit RoadRunner
CmdRoadRunnerApi "Exit()" --serverAddress=localhost:!PORT!

bulk_openscenario_export.bash (Linux)
#!/bin/bash
Export all RoadRunner scenes in project to ASAM OpenDRIVE.

RRPATH="/usr/local/RoadRunner_R2023a/bin/glnxa64"
PROJECT="/local/RR/MyProject"
PORT=54321

Open RoadRunner.
cd "$RRPATH"
./AppRoadRunner --projectPath="$PROJECT" --apiPort="$PORT" &
sleep 2 # Wait for API server to start

Load scenes from "Scenarios" folder and export to "Exports" folder.
for SCENARIO in $PROJECT/Scenarios/*.rrscenario
do
 SCENARIONAME=$(basename $SCENARIO .rrscenario)
 EXPORTPATH=$PROJECT/Exports/$SCENARIONAME.xodr
 ./CmdRoadRunnerApi "LoadScenario(file_path='$SCENARIONAME')" --serverAddress=localhost:$PORT
 ./CmdRoadRunnerApi "Export(file_path='$EXPORTPATH' format_name='OpenSCENARIO')" --serverAddress=localhost:$PORT
done

Exit RoadRunner.
./CmdRoadRunnerApi "Exit()" --serverAddress=localhost:$PORT

This script performs these actions:

1 Opens RoadRunner to a project and starts the RoadRunner API server.
2 Loads each scenario from the Scenarios folder of the project, along with the scene that the

scenario was last saved with.
3 Exports each scenario to ASAM OpenSCENARIO using the default settings. RoadRunner exports

each scenario file to the Exports folder of the project and gives it the same name as its
associated scene, but with the extension .xosc. The associated OpenSceneGraph, ASAM
OpenDRIVE, and GeoJSON files are exported for each scenario as well.

4 Exits RoadRunner and shuts down the RoadRunner server.

4 Programmatic Scenario Interfaces

4-22

Call this script from the command line. For example, if you used the .bat script, then call this
command from a Windows command prompt.

bulk_openscenario_export

To verify that the script exported the scenarios, navigate to the Exports folder of the specified
project and list the contents of the folder. For example, if you specified a project at path "C:\RR
\MyProject", run these commands.

cd "C:\RR\MyProject\Exports"
dir

The folder lists all the exported scenarios and associated files. For example, if your project includes
the TrajectoryCutIn scenario, then your Exports folder contains these files.
...
TrajectoryCutIn.geojson
TrajectoryCutIn.osgb
TrajectoryCutIn.xodr
TrajectoryCutIn.xosc
...

Extend RoadRunner Export Options
To customize the script further, you can specify nondefault export settings. For more details on these
settings, see the Export RPC method.

If the scenarios in your project all use the same scene, you can speed up export by exporting the
scene with the first scenario export only. After you export the first scene, set the
path_to_existing_scene_graph option in the open_scenario_settings field of the Export
method. RoadRunner reuses this scene for all subsequent exports. For an example of how to use the
path_to_existing_scene_graph option, see “Generate Scenario Variations Using gRPC API” on
page 4-2.

For additional flexibility in exporting scenarios, consider compiling the protocol buffer (protobuf) files
that define the API into your desired programming language. For more details, see “Compile Protocol
Buffers for RoadRunner gRPC API”. You can then write client applications in those languages. For
sample clients, see these examples:

• “Create gRPC Python Client for Controlling RoadRunner Programmatically”
• “Create gRPC C++ Client for Controlling RoadRunner Programmatically”

See Also
AppRoadRunner | Export | Import | export_settings.proto | import_settings.proto

Related Examples
• “Control RoadRunner Programmatically Using gRPC API”
• “Export to ASAM OpenSCENARIO” on page 5-2

 Export Multiple Scenarios Using gRPC API

4-23

Simulate a RoadRunner Scenario Using MATLAB Functions

This example shows how to run and visualize scenarios in RoadRunner Scenario using MATLAB
functions. You can use MATLAB functions to control RoadRunner Scenario programmatically.
Common programmatic tasks that you can perform include:

• Open and close the RoadRunner Scenario application.
• Open, close, and save scenes, scenarios, and projects.
• Import and export scenarios.

RoadRunner Scenario enables you to interactively design and simulate agents in scenarios. To verify
the behavior of these agents, it is often helpful to automate the process of running and analyzing the
results of scenario simulations. In this example, you learn how to use Automated Driving Toolbox® to
launch RoadRunner Scenario, configure and run a simulation, and then plot simulation results.

To run this example, you must:

• Have an Automated Driving Toolbox® license.
• Have a RoadRunner license and the product is installed.
• Have a RoadRunner Scenario license and the product is installed.
• Have created a RoadRunner project folder.

Set Up Environment to Launch RoadRunner Scenario

To use MATLAB functions to control RoadRunner Scenario programmatically, use the roadrunner
object. By default, roadrunner opens RoadRunner from the default installation folder for the
platform you are using (either Windows® or Linux®). These are the default installation locations by
platform:

• Windows – C:\Program Files\RoadRunner R20NNx\bin\win64
• Linux, Ubuntu® – /usr/local/RoadRunner_R20NNx/bin/glnxa64

R20NNx is the MATLAB release you are using.

If your RoadRunner Scenario installation is at a different location than the default location, use the
MATLAB settings API to customize the default value of the RoadRunner Scenario installation
folder.

Open RoadRunner Scenario Session

You can use the roadrunner function to create a roadrunner object and launch a RoadRunner
Scenario session. The roadrunner function requires an argument that specifies the location of a
RoadRunner project. A RoadRunner project folder typically contains these subfolders: Assets,
Exports, Project, Scenarios, and Scenes.

Open a project in RoadRunner using the roadrunner function by specifying the location in which to
create a project. This example assumes that RoadRunner is installed in its default location in
Windows.

Specify the path to an existing project. For example, this code shows the path to a project located on
C:\RR\MyProject. The function returns a roadrunner object, rrApp, that provides functions for
performing basic workflow tasks such as opening, closing, and saving scenes and projects.

4 Programmatic Scenario Interfaces

4-24

rrProj = "C:\RR\MyProject";
rrApp = roadrunner(rrProj,InstallationFolder="C:\Program Files\RoadRunner R2022b\bin\win64");

Open an existing scenario in RoadRunner Scenario by using the openScenario function and
specifying the rrApp object and the specific scenario filename that you want to open. For example,
open the TrajectoryCutIn scenario file, which is a scenario included by default in RoadRunner
projects. This function opens the desired scenario in the RoadRunner Scenario application through
MATLAB.

openScenario(rrApp,"TrajectoryCutIn.rrscenario");

Simulate Scenario

Once the scenario is loaded into RoadRunner Scenario, automate the simulation tasks by using the
createSimulation function to create a simulation object. The simulation object enables you to
programatically interact with the scenario simulation.

Specify the rrApp object as an input argument to the createSimulation function. The function
creates a simulation object, rrSim.

rrSim = createSimulation(rrApp);

Connection status: 1
Connected to RoadRunner Scenario server on localhost:59151, with client id {1c6fd5fc-736d-4cd9-9d60-84bc96444b95}

Set a maximum simulation time of 10 seconds. Use the set function and specify the rrSim object,
name of the variable to set, and the value for that variable as input arguments.

maxSimulationTimeSec = 10;
set(rrSim,'MaxSimulationTime',maxSimulationTimeSec);

Enable simulation result logging so that you can plot the results later.

set(rrSim,"Logging","on");

Start the simulation. Use a while loop to monitor the status of the simulation, and wait for the
simulation to complete.

set(rrSim,"SimulationCommand","Start");
while strcmp(get(rrSim,"SimulationStatus"),"Running")
 pause(1);
end

Plot Agent Velocities

In this section, you retrieve the logged velocities of the actors from the simulation and plot their
magnitudes against simulation time.

Get the logged results from the scenario. Use the get function and specify the rrSim object and
"SimulationLog" as input arguments. The function returns the simulation logs in rrLog, which
contains information about the simulation of the scenario.

rrLog = get(rrSim,"SimulationLog");

The TrajectoryCutIn scenario contains two actors. The red sedan has Actor ID set to 1, and
the white sedan has Actor ID set to 2. Get the logged velocities of these actors from simulation log.
Also, get the corresponding simulation times from the simulation logs.

 Simulate a RoadRunner Scenario Using MATLAB Functions

4-25

velocityAgent1 = get(rrLog,'Velocity','ActorID',1);
velocityAgent2 = get(rrLog,'Velocity','ActorID',2);
time = [velocityAgent1.Time];

The function returns the velocities of the red sedan and the white sedan as vectors and stores them in
the velMagAgent1 and velMagAgent2 variables, respectively. Calculate the magnitude of the
velocity for each actor by using the norm function.

velMagAgent1 = arrayfun(@(x) norm(x.Velocity,2),velocityAgent1);
velMagAgent2 = arrayfun(@(x) norm(x.Velocity,2),velocityAgent2);

Plot the agent velocities with respect to simulation time using the plot function. Label the graph and
the x and y axes.

figure
hold on
plot(time,velMagAgent1,"r")
plot(time,velMagAgent2,"b")
grid on
title("Agent Velocities from RoadRunner Scenario")
ylabel("Velocity (m/sec)")
xlabel("Time (sec)")
legend("Actor ID = 1","Actor ID = 2")

4 Programmatic Scenario Interfaces

4-26

Notice that the velocities of the actors correspond to their specifications in the Logic Editor of
RoadRunner Scenario.

Plot Agent Velocities

Plot the lanes from the RoadRunner scene and overlay the positions of vehicles on the map.

Get the HD Map specification from RoadRunner by using the getMap function. Notice that the
function returns a structure and one of the fields contains information about the lanes.

hdMap = getMap(rrSim);
lanes = hdMap.map.lanes;

Loop through each of the lane specifications using a for loop and plot the lane coordinates.

figure
hold on
for i = 1:numel(lanes)
 control_points = lanes(i).geometry.values;
 x_coordinates = arrayfun(@(cp) cp.x,control_points);
 y_coordinates = arrayfun(@(cp) cp.y,control_points);
 plot(x_coordinates, y_coordinates, 'black');
end
axis equal

 Simulate a RoadRunner Scenario Using MATLAB Functions

4-27

Extract the positions of the vehicles and plot them on the lanes.

poseActor1 = rrLog.get('Pose','ActorID',1);
positionActor1_x = arrayfun(@(x) x.Pose(1,4),poseActor1);
positionActor1_y = arrayfun(@(x) x.Pose(2,4),poseActor1);
plot(positionActor1_x,positionActor1_y,"r","LineWidth",2)

poseActor2 = rrLog.get('Pose','ActorID',2);
positionActor2_x = arrayfun(@(x) x.Pose(1,4),poseActor2);
positionActor2_y = arrayfun(@(x) x.Pose(2,4),poseActor2);
plot(positionActor2_x,positionActor2_y,"b","LineWidth",2)

title("Agent Positions from RoadRunner Scenario")
ylabel("Y (m)")
xlabel("X (m)")

figure(gcf)

Close Scenario Session

To stop interacting with RoadRunner Scenario, close the simulation. Then close the application.

close(rrApp)

Close the open figure.

4 Programmatic Scenario Interfaces

4-28

close all

Further Exploration

In this example you learned about the basic capabilities of connecting to RoadRunner Scenario
programmatically using MATLAB. To extend this script further, you can:

• Vary the scenario and vehicle actors in the scenario.
• Develop MATLAB and Simulink behaviors, publish actor behavior, simulate behaviors in

RoadRunner Scenario simulation, and control simulations and access simulation parameters.

See Also
roadrunner | openScenario | createSimulation | Simulink.ScenarioLog | set | close |
settings

Related Examples
• “Design and Simulate Scenarios” on page 1-4
• “Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink” (Automated

Driving Toolbox)

 Simulate a RoadRunner Scenario Using MATLAB Functions

4-29

Export Scenarios

5

Export to ASAM OpenSCENARIO
ASAM OpenSCENARIO is an open file format that describes the dynamic content for an automated
driving simulation. Using RoadRunner Scenario, you can export scenarios to ASAM OpenSCENARIO
file versions 1.0, 1.1, and 2.0.

Export Interactively
To export scenarios to ASAM OpenSCENARIO 1.x by using the RoadRunner Scenario user interface,
follow these steps:

1 From the Tools menu, select Scenario Editing to switch to scenario editing mode.
2 From the File menu, select Export, then ASAM OpenSCENARIO 1.x (.xosc + .xodr + .osgb).
3 In the Export ASAM OpenSCENARIO dialog box, set the File path option to the path where you

want to export the generated .xosc file.
4 On the OpenSCENARIO tab, specify the Version for the output file as OpenSCENARIO 1.0 or

OpenSCENARIO 1.1.

Default: OpenSCENARIO 1.1
5 (Optional) On the ASAM OpenDRIVE tab, specify options to customize the exported ASAM

OpenDRIVE (.xodr) file. This file and the associated .geojson file describe the road network
used in the scenario. For details on these options, see “Export to ASAM OpenDRIVE”.

6 (Optional) On the OpenSceneGraph tab, specify options to customize the OpenSceneGraph
(.osgb) file. This file describes the scene used in the scenario. For details on these options, see
“Export to OpenSceneGraph”.

7 Click Export.

To export scenarios to ASAM OpenSCENARIO 2.0 by using the RoadRunner Scenario user interface,
follow these steps:

1 From the Tools menu, select Scenario Editing to switch to scenario editing mode.
2 From the File menu, select Export, then ASAM OpenSCENARIO 2.0 (.osc + .xodr).
3 In the Export ASAM OpenSCENARIO 2.0 dialog box, set the File path option to the path where

you want to export the generated .osc file.
4 (Optional) Specify options to customize the exported ASAM OpenDRIVE (.xodr) file. This file

describe the road network used in the scenario. For details on these options, see “Export to
ASAM OpenDRIVE”.

5 Click Export.

RoadRunner Scenario exports these files for the scenario:

5 Export Scenarios

5-2

ASAM OpenSCENARIO File Version Exported Files
ASAM OpenSCENARIO 1.x • ASAM OpenSCENARIO file (.xosc) — XML

data that describes the scenario logic and
actors

• ASAM OpenDRIVE file (.xodr) — XML data
that describes the road network

• OpenSceneGraph file (.osgb) — Binary 3D
format file that describes the scene

• GeoJSON file (.geojson) — JSON data that
describes the geographic location of the
ASAM OpenDRIVE data

ASAM OpenSCENARIO 2.0 • ASAM OpenSCENARIO file (.osc) — Domain
specific language (DSL) format that describes
the scenario logic and actors

• ASAM OpenDRIVE file (.xodr) — XML data
that describes the road network

• GeoJSON file (.geojson) — JSON data that
describes the geographic location of the
ASAM OpenDRIVE data

Export Programmatically
To export an ASAM OpenSCENARIO file programmatically, use the Export remote procedure call
(RPC) method. Using this method and other RPC methods, you can, for example, export all scenarios
in a project to ASAM OpenSCENARIO 1.x or 2.0 file formats. If all scenarios use the same scene, you
can also specify an option to export the OpenSceneGraph file for the scene a single time rather than
export this large file with each scenario. This option can significantly reduce export times.

For an example that shows how to export scenarios to ASAM OpenSCENARIO programmatically, see
“Generate Scenario Variations Using gRPC API” on page 4-2.

Visualize Exported Scenario
Using exported ASAM OpenSCENARIO 1.x files, you can view the scenario in an external simulator,
such as esmini (version 2.4 and higher are supported).

This code shows a sample call to view an exported scenario on a local Windows installation of esmini.
cd "C:\Program Files\esmini\bin"
esmini --window 60 60 800 400 --osc "C:\RR\MyProject\Exports\CutIn.xosc"

 Export to ASAM OpenSCENARIO

5-3

https://github.com/esmini/esmini

ASAM OpenSCENARIO 1.x Representations
This section describes how vehicle properties and dynamic logic specified using various actions and
conditions in RoadRunner Scenario are represented in the ASAM OpenSCENARIO 1.x format.

Properties of Actors

RoadRunner Scenario exports the properties of vehicles in the scenario using a Vehicle element
within a ScenarioObject element. Vehicle properties are derived from the corresponding vehicle
asset in the Library Browser. For more information on vehicle assets and their parameters, see
Vehicle Assets.

Example
<ScenarioObject name="CompactCar">
 <Vehicle name="CompactCar" vehicleCategory="car" mass="1500" model3d="Vehicles/CompactCar.fbx">
 <ParameterDeclarations/>
 <BoundingBox>
 <Center x="0" y="0" z="0.705196"/>
 <Dimensions height="1.41489" length="3.65698" width="1.86693"/>
 </BoundingBox>
 <Performance maxAcceleration="5" maxDeceleration="5" maxSpeed="65"/>
 <Axles>
 <FrontAxle maxSteering="0.698132" positionX="1.17035" positionZ="0.315215" trackWidth="1.19184" wheelDiameter="0.63043"/>
 <RearAxle maxSteering="0" positionX="-1.2491" positionZ="0.315215" trackWidth="1.19184" wheelDiameter="0.63043"/>
 </Axles>
 <Properties/>
 </Vehicle>
</ScenarioObject>

5 Export Scenarios

5-4

Note In RoadRunner Scenario, the bounding box dimensions for vehicle actors include the tires.
Vehicle actors exported to ASAM OpenSCENARIO formats maintain these bounding box dimensions.

RoadRunner Scenario exports the properties of pedestrians using a Pedestrian element within a
ScenarioObject element. Pedestrian properties are derived from the corresponding character asset
in the Library Browser. For more information on character assets and their parameters, see
Character Assets.

Example
<ScenarioObject name="Citizen_Male">
 <Pedestrian name="Citizen_Male" mass="6.2000000000000000e+1" model3d="Characters/Citizen_Male.rrchar" pedestrianCategory="pedestrian">
 <ParameterDeclarations/>
 <BoundingBox>
 <Center x="0.0027168" y="-0.0681267" z="0.872004"/>
 <Dimensions height="1.74811" length="0.391623" width="0.626842"/>
 </BoundingBox>
 <Properties/>
 </Pedestrian>
</ScenarioObject>

Vehicle Trajectory

RoadRunner Scenario exports the trajectory of a vehicle to the Trajectory element of the
FollowTrajectoryAction element in the Init section of the output ASAM OpenSCENARIO file.
The Trajectory element defines the motion of the associated vehicle in the world position format
using a polyline. Setting TrajectoryFollowingMode to position forces the vehicle to strictly
adhere to the specified trajectory.

If you specify Timing Data for waypoints in the scenario, RoadRunner Scenario exports absolute
time domain values of trajectory waypoints, without any scaling or offset, by using the Timing
property of the TimeReference element. Otherwise, RoadRunner Scenario exports the trajectory
using an empty TimeReference element, and you should ignore the time information contained in
the Trajectory element.

Example
<RoutingAction>
 <FollowTrajectoryAction>
 <Trajectory name="Path_CompactCar" closed="false">
 <Shape>
 <Polyline>
 <Vertex time="0.0000000000000000e+0">
 <Position>
 <WorldPosition x="-1.3816883511982547e+2" y="-5.2470924367182683e+1" z="0.0000000000000000e+0" h="0.0000000000000000e+0" p="0.0000000000000000e+0" r="0.0000000000000000e+0"/>
 </Position>
 </Vertex>
 <Vertex time="1.0000000000000000e+0">
 <Position>
 <WorldPosition x="-1.3246930791258063e+2" y="-5.0256077000744838e+1" z="0.0000000000000000e+0" h="0.0000000000000000e+0" p="0.0000000000000000e+0" r="0.0000000000000000e+0"/>
 </Position>
 </Vertex>
 </Polyline>
 </Shape>
 </Trajectory>
 <TimeReference/>
 <TrajectoryFollowingMode followingMode="position"/>
 </FollowTrajectoryAction>
</RoutingAction>

 Export to ASAM OpenSCENARIO

5-5

Dynamic Logic

RoadRunner Scenario exports all action phases of all vehicles using a single Story element and one
or more Act elements, such that the exported file preserves the original intent and simulation
behavior of the scenario.

If you specify end condition for an action phase, RoadRunner Scenario exports the action phase using
a distinct Act element. Otherwise, RoadRunner Scenario attempts to export action phases of a
scenario using the minimum number of Act elements.

ASAM OpenSCENARIO v1.x file format specifies that an Act can end when all nested
ManeuverGroup instances are completed. This is true even if the stop trigger of the Act is not yet
satisfied. RoadRunner Scenario treats end conditions differently, keeping the action running until the
end condition is satisfied. Therefore, when you specify an end condition for an action phase,
RoadRunner Scenario exports the action using a distinct Act instance, which has a dummy
ManeuverGroup instance to force the act to continue running until the specified end condition is
satisfied. This ManeuverGroup contains ForceActToExecuteUntilStopTrigger event that never
triggers to prevent the act from ending before the stop trigger is satisfied.

Example
<ManeuverGroup name="Act_GlobalGroup" maximumExecutionCount="1">
 <Actors selectTriggeringEntities="false"/>
 <Maneuver name="Act_GlobalGroup_Maneuver">
 <Event name="ForceActToExecuteUntilStopTrigger" priority="parallel">
 <Action name="NeverExecutedAction">
 <UserDefinedAction>
 <CustomCommandAction type="MW_WaitAction"></CustomCommandAction>
 </UserDefinedAction>
 </Action>
 <StartTrigger>
 <ConditionGroup>
 <Condition name="NeverSatisfiedCondition" conditionEdge="none" delay="0.0000000000000000e+0">
 <ByValueCondition>
 <StoryboardElementStateCondition storyboardElementType="story" storyboardElementRef="Story" state="completeState"/>
 </ByValueCondition>
 </Condition>
 </ConditionGroup>
 </StartTrigger>
 </Event>
 </Maneuver>
</ManeuverGroup>

To translate sequential logic (serial phases) of the RoadRunner scenario to ASAM OpenSCENARIO
v1.x file format, RoadRunner uses StoryboardElementStateCondition elements for triggering
the events in the specified sequential order.

Tip To understand the structure of the exported data, run the transformation for ASAM
OpenSCENARIO v1.x export. To run the transformation, select Tools > Debug > Run OSCv1
Transform.

Change Speed Action

RoadRunner Scenario exports Change Speed actions using a SpeedAction element.

When you set the Relative to parameter to Actor, the specified Speed Offset value is exported as a
RelativeTargetSpeed element with a speedTargetValueType value of delta. The Direction
parameter specifies the sign of the speed target value in the exported file.

5 Export Scenarios

5-6

Direction Parameter Speed Target Value in Exported File
Faster than Positive value specified using Speed Offset

parameter
Slower than Negative value specified using Speed Offset

parameter
Same speed as 0

In the exported file, the continuous property of the RelativeTargetSpeed element is set to true
if you set the Speed Sampling parameter to Continuous. Otherwise the continuous property is
set to false.

Example
<SpeedAction>
 <SpeedActionDynamics dynamicsShape="cubic" dynamicsDimension="rate" value="1.0000000000000000e+1"/>
 <SpeedActionTarget>
 <RelativeTargetSpeed entityRef="Ambulance" value="-20" speedTargetValueType="delta" continuous="true"/>
 </SpeedActionTarget>
</SpeedAction>

Change Lane Action

RoadRunner Scenario exports Change Lane actions using a LaneChangeAction element.
RoadRunner Scenario supports only the RelativeTargetLane type of LaneChangeTarget
element. AbsoluteTargetLane is not supported.

RoadRunner Scenario exports the sign of the specified Lane Offset parameter as shown in this table.

Direction Parameter Sign of Lane Offset Value in Exported File
To the left Positive
To the right Negative

Note The targetLaneOffset attribute of ASAM OpenSCENARIO 1.x is not supported. RoadRunner
Scenario assumes that a vehicle travels along the center line of a lane after performing a Change
Lane action.

Example
<LaneChangeAction>
 <LaneChangeActionDynamics dynamicsShape="cubic" dynamicsDimension="distance" value="10"/>
 <LaneChangeTarget>
 <RelativeTargetLane entityRef="CompactCar" value="-2"/>
 </LaneChangeTarget>
</LaneChangeAction>

Change Lateral Offset Action

RoadRunner Scenario exports Change Lateral Offset actions using a LaneOffsetAction
element. RoadRunner Scenario supports only the AbsoluteTargetLaneOffset type of
LaneOffsetTarget element. RelativeTargetLaneOffset is not supported.

 Export to ASAM OpenSCENARIO

5-7

Note ASAM OpenSCENARIO 1.x does not consider the time or distance over which a
LaneOffsetAction occurs. RoadRunner Scenario supports a time dimension to control
LaneOffsetAction. The maxLateralAcc element of ASAM OpenSCENARIO 1.x is not supported.

Example
<LaneOffsetAction continuous="false">
 <LaneOffsetActionDynamics dynamicsShape="cubic"/>
 <LaneOffsetTarget>
 <AbsoluteTargetLaneOffset value="0.2"/>
 </LaneOffsetTarget>
</LaneOffsetAction>

Change Longitudinal Distance Action

RoadRunner Scenario exports Change Longitudinal Distance actions using a
LongitudinalDistanceAction element. RoadRunner Scenario supports only the entity type of
coordinateSystem element.

This table shows the relation between attributes of RoadRunner Scenario and the elements in the
exported file.

Attribute Element in Exported File
Relative Position displacement
Reference Actor entityRef
Space Distance Offset distance

RoadRunner Scenario exports the distance
property with the value you specify for the Space
Distance Offset attribute. The timeGap
property is exported with a value of 0.

Time Distance Offset timeGap

RoadRunner Scenario exports the timeGap
property with the value you specify for the Time
Distance Offset attribute. The distance
property is exported with a value of 0.

Measure From freespace

If you set the Measure From attribute to
Bounding boxes, RoadRunner Scenario sets the
freespace property to true in the exported file.
Otherwise, it sets the freespace property to
false.

Sampling Mode continuous

If you set the Sampling Mode attribute to
continuous, RoadRunner Scenario sets the
continuous property to true in the exported
file. Otherwise, it sets the continuous property
to false.

5 Export Scenarios

5-8

Attribute Element in Exported File
Dynamic Constraints DynamicConstraints

Example
<LongitudinalDistanceAction continuous="true" coordinateSystem="entity"
 displacement="leadingReferencedEntity" distance="5.0000000000000000e+1"
 entityRef="CompactCar2" freespace="true" timeGap="0.0000000000000000e+0">
 <DynamicConstraints maxAcceleration="5.0000000000000000e+0"
 maxDeceleration="5.0000000000000000e+0" maxSpeed="6.5000000000000000e+1"/>
</LongitudinalDistanceAction>

Change Behavior Parameter Action

RoadRunner Scenario exports Change Behavior Parameter actions by using a
ParameterAction element to set the specified parameter to a new value.

Example
<GlobalAction>
 <ParameterAction parameterRef="Yellow_Headlights">
 <SetAction value="ON"/>
 </ParameterAction>
</GlobalAction>

Change Global Parameter Action

RoadRunner Scenario exports Change Global Parameter actions by using a ParameterAction
element to set the specified parameter to a new value.

Example
<GlobalAction>
 <ParameterAction parameterRef="PrecipitationDensity">
 <SetAction value=".75"/>
 </ParameterAction>
</GlobalAction>

Remove Actor Action

RoadRunner Scenario exports Remove Actor actions by using a DeleteEntityAction element.

Example
<Action name="Act2_CompactCarGroup_Remove_Actor">
 <GlobalAction>
 <EntityAction entityRef="CompactCar">
 <DeleteEntityAction/>
 </EntityAction>
 </GlobalAction>
</Action>

User Defined Action

RoadRunner Scenario exports User Defined actions by using a UserDefinedAction element. This
example shows how RoadRunner Scenario exports the details of the User Defined action and the
name of the referenced actor that executes this action. In this example, the user-defined action
CustomDrive controls the ThrottleLevel and SteeringAngle parameters of an ambulance. For

 Export to ASAM OpenSCENARIO

5-9

more information on how to design a scenario with user-defined actions, see “Design Vehicle
Following User-Defined Actions Scenario” on page 3-50.

Example
<UserDefinedAction>
 <CustomCommandAction type="CustomDrive">Actor:Ambulance, ThrottleLevel:30, SteeringAngle:20</CustomCommandAction>
</UserDefinedAction>

Wait Action

RoadRunner Scenario exports Wait actions as a UserDefinedAction element, because ASAM
OpenSCENARIO does not specify this action. This action does not do anything until the specified end
condition is satisfied.

Example
<UserDefinedAction>
 <CustomCommandAction type="MW_WaitAction"></CustomCommandAction>
</UserDefinedAction>

Add Actors After Scenario Initialization

In RoadRunner Scenario, you can configure an actor to appear after scenario initialization during
simulation. To do so, follow these steps:

1 In the Logic editor, right-click the Initialize Speed action phase of the desired actor, and
select Add an Action Phase After. By default, RoadRunner Scenario adds a Change Speed
action phase.

2 Right-click this newly added Change Speed action phase, and select Set as Initial Phase.
3 Select the Change Speed action phase. From the Attributes pane, set the Action Type

attribute to Wait. By default, the Wait action has a Duration condition for 5 seconds. If you
want to change the wait time, modify this value from the Attributes pane.

When you add an actor to the scenario after initialization, RoadRunner Scenario exports the position
information of the actor using the AddEntityAction element of the ASAM OpenSCENARIO 1.x file
format. RoadRunner Scenario supports only the LanePosition type for the Position property of
the AddEntityAction element.

Example
<GlobalAction>
 <EntityAction entityRef="Sedan">
 <AddEntityAction>
 <Position>
 <LanePosition roadId="215" laneId="-1" offset="-5.25206e-15" s="12.7">
 <Orientation type="absolute" h="0.170215" p="0" r="0"/>
 </LanePosition>
 </Position>
 </AddEntityAction>
 </EntityAction>
</GlobalAction>

Simulation Time Condition

By default, RoadRunner Scenario exports a Simulation Time condition to start an Act at a
simulation time greater than 0 and end a Story at a simulation time greater than 60 seconds. You
can also specify this condition as an end condition for any action phase in your scenario, in which

5 Export Scenarios

5-10

case RoadRunner Scenario exports your specified Simulation Time condition data to trigger the
next action.

Example
<StartTrigger>
 <ConditionGroup>
 <Condition name="Start Condition of Act" conditionEdge="rising" delay="0.0000000000000000e+0">
 <ByValueCondition>
 <SimulationTimeCondition value="0.0000000000000000e+0" rule="greaterThan"/>
 </ByValueCondition>
 </Condition>
 </ConditionGroup>
</StartTrigger>

Actor Speed Condition

Using the Actor Speed condition, you can check either the current absolute speed of the referenced
actor or relative speed between two actors. Depending on how you set the Relative to attribute of
the Actor Speed condition, RoadRunner Scenario exports the Actor Speed condition to one of two
elements of an ASAM OpenSCENARIO 1.x file.

Value of Relative to Attribute of Actor Speed
Condition

Element in Exported File

Absolute SpeedCondition
Actor RelativeSpeedCondition

Example
<Condition name="Start Condition of Event_CompactCar_1" conditionEdge="none" delay="0.0000000000000000e+0">
 <ByEntityCondition>
 <TriggeringEntities triggeringEntitiesRule="any">
 <EntityRef entityRef="CompactCar"/>
 </TriggeringEntities>
 <EntityCondition>
 <SpeedCondition value="1.5000000000000000e+1" rule="equalTo"/>
 </EntityCondition>
 </ByEntityCondition>
</Condition>

Distance To Point Condition

RoadRunner Scenario exports the Distance To Point condition using the
ReachPositionCondition element of ASAM OpenSCENARIO 1.x. The Threshold attribute of the
Distance To Point condition specifies the tolerance field of the ReachPositionCondition
element. The Rule attribute of the Distance To Point condition is not exported because ASAM
OpenSCENARIO does not specify a rule for ReachPositionCondition. RoadRunner Scenario
supports the WorldPosition type of coordinates for specifying the Position attribute.

 Export to ASAM OpenSCENARIO

5-11

Example
<Condition name="Start Condition of Event_CompactCar_1" conditionEdge="none" delay="0.0000000000000000e+0">
 <ByEntityCondition>
 <TriggeringEntities triggeringEntitiesRule="any">
 <EntityRef entityRef="CompactCar"/>
 </TriggeringEntities>
 <EntityCondition>
 <ReachPositionCondition tolerance="3.2500000000000000e+0">
 <Position>
 <WorldPosition x="2.5061806803169961e-1" y="7.3375634784816427e+1" z="0.0000000000000000e+0" h="0.0000000000000000e+0" p="0.0000000000000000e+0" r="0.0000000000000000e+0"/>
 </Position>
 </ReachPositionCondition>
 </EntityCondition>
 </ByEntityCondition>
</Condition>

Distance To Actor Condition

RoadRunner Scenario exports the Distance To Actor condition using the
RelativeDistanceCondition element of ASAM OpenSCENARIO 1.x. The Threshold attribute of
the Distance To Actor condition specifies the value field of the RelativeDistanceCondition
element. RoadRunner Scenario exports cartesianDistance value for the
relativeDistanceType property. The freespace value of the RelativeDistanceCondition
element is set to false.

Example
<Condition name="Start Condition of Event_CompactCar_1" conditionEdge="none" delay="0.0000000000000000e+0">
 <ByEntityCondition>
 <TriggeringEntities triggeringEntitiesRule="any">
 <EntityRef entityRef="CompactCar"/>
 </TriggeringEntities>
 <EntityCondition>
 <RelativeDistanceCondition entityRef="PickupTruck" relativeDistanceType="cartesianDistance" value="30" freespace="false" rule="lessThan"/>
 </EntityCondition>
 </ByEntityCondition>
</Condition>

Behavior Parameter Condition

RoadRunner Scenario exports the Behavior Parameter condition using the ParameterCondition
element of ASAM OpenSCENARIO 1.x.

Example
<Condition name="Behavior_Parameter" conditionEdge="none" delay="0.0000000000000000e+0">
 <ByValueCondition>
 <ParameterCondition parameterRef="Yellow_Headlights" value="ON" rule="equalTo"/>
 </ByValueCondition>
</Condition>

Global Parameter Condition

RoadRunner Scenario exports the Global Parameter condition using the ParameterCondition
element of ASAM OpenSCENARIO 1.x.

Example
<Condition name="Global_Parameter" conditionEdge="none" delay="0.0000000000000000e+0">
 <ByValueCondition>
 <ParameterCondition parameterRef="SpeedLimit" value="5" rule="lessOrEqual"/>
 </ByValueCondition>
</Condition>

5 Export Scenarios

5-12

Longitudinal Distance To Actor Condition

RoadRunner Scenario exports the Longitudinal Distance To Actor condition using the
RelativeDistanceCondition element of ASAM OpenSCENARIO 1.x. The
relativeDistanceType property is set to a value of longitudinal in the exported file.

The Threshold attribute of the Longitudinal Distance To Actor condition specifies the value
property of the RelativeDistanceCondition element. The Measure From attribute specifies the
freespace property. When you set the Measure From attribute to Bounding boxes, RoadRunner
Scenario sets the freespace property to true in the exported file. Otherwise, it sets the freespace
property to false.

Note The Relative Position and the Measure Distance attributes of the Longitudinal
Distance To Actor condition are not applicable to the ASAM OpenSCENARIO 1.x file format. Your
specifications for these attributes do not affect the exported file.

Example
<Condition name="" conditionEdge="none" delay="0.0000000000000000e+0">
 <ByEntityCondition>
 <TriggeringEntities triggeringEntitiesRule="any">
 <EntityRef entityRef="Sedan"/>
 </TriggeringEntities>
 <EntityCondition>
 <RelativeDistanceCondition entityRef="CompactCar" relativeDistanceType="longitudinal" value="30" freespace="true" rule="lessThan" coordinateSystem="lane"/>
 </EntityCondition>
 </ByEntityCondition>
</Condition>

Collision Condition

The Collision condition checks whether the referenced entities are involved in a collision.
RoadRunner Scenario exports this condition using a collisionCondition element.

Example
<Condition name="" conditionEdge="none" delay="0.0000000000000000e+0">
 <ByEntityCondition>
 <TriggeringEntities triggeringEntitiesRule="any">
 <EntityRef entityRef="CompactCar"/>
 </TriggeringEntities>
 <EntityCondition>
 <CollisionCondition entityRef="Sedan"/>
 </EntityCondition>
 </ByEntityCondition>
</Condition>

Phase State Condition

RoadRunner Scenario exports the Phase State condition using the
StoryboardElementStateCondition element of ASAM OpenSCENARIO 1.x.

Example
<Condition name="Phase_State3" conditionEdge="none" delay="0.0000000000000000e+0">
 <ByValueCondition>
 <StoryboardElementStateCondition storyboardElementType="act" storyboardElementRef="Act" state="runningState"/>
 </ByValueCondition>
</Condition>

 Export to ASAM OpenSCENARIO

5-13

Duration Condition

The Duration condition specifies the duration of an action phase. RoadRunner Scenario exports this
condition using a StoryBoardElementStateCondition element that references the action phase
for which you specify the Duration condition. The specified duration is exported as a delay
attribute of StoryBoardElementStateCondition . The state attribute of the
StoryBoardElementStateCondition is set to startTransition.

Example
<Condition name="Start Condition durations of Event_Speed_Action_CompactCar_1" conditionEdge="none" delay="5.0000000000000000e+0">
 <ByValueCondition>
 <StoryboardElementStateCondition storyboardElementType="action" storyboardElementRef="Speed_Action_CompactCar_1" state="startTransition"/>
 </ByValueCondition>
</Condition>

Limitations of ASAM OpenSCENARIO 1.x Export

• Export of a separate file for the actor catalog is not supported.
• Scenarios with composite conditions are not supported for esmini validation. In the Logic editor,

composite conditions are indicated by this icon:

• Not all actions and conditions are supported for ASAM OpenSCENARIO 1.x export. This table
shows the complete list of supported elements and attributes for ASAM OpenSCENARIO 1.x
export.

Supported Element or Attribute
AbsoluteTargetLaneOffset
AbsoluteTargetSpeed
Act
Action
Actors
AddEntityAction
Axle
Axles
BoundingBox
ByEntityCondition
ByValueCondition
CatalogLocations
Center
CollisionCondition
Condition
ConditionGroup

5 Export Scenarios

5-14

Supported Element or Attribute
Dimensions
DistanceCondition
Entities
EntityCondition
EntityObject
EntityRef
EntitySelection
Event
File
FileHeader
FollowTrajectoryAction
GlobalAction
Init
LaneChangeAction
LaneChangeTarget
LaneOffsetAction
LaneOffsetActionDynamics
LaneOffsetTarget
LanePosition
LateralAction
LongitudinalAction
LongitudinalDistanceAction
Maneuver
ManeuverGroup
MiscObject
OpenScenario
Orientation
ParameterAction
ParameterCondition
ParameterDeclaration
Performance
Polyline
Position
Private
PrivateAction
ReachPositionCondition

 Export to ASAM OpenSCENARIO

5-15

Supported Element or Attribute
RelativeDistanceCondition
RelativeLanePosition
RelativeSpeedCondition
RelativeTargetLane
RelativeTargetSpeed
RoadNetwork
RoutingAction
ScenarioObject
SelectedEntities
Shape
SimulationTimeCondition
SpeedAction
SpeedActionTarget
SpeedCondition
Story
Storyboard
StoryboardElementStateCondition
TeleportAction
TimeReference
Trajectory
TransitionDynamics
Trigger
TriggeringEntities
UserDefinedAction
Vehicle
Vertex
Waypoint
WorldPosition

ASAM OpenSCENARIO 2.0 Representations
This section describes how vehicle properties and dynamic logic specified using various actions and
conditions in RoadRunner Scenario are represented in the ASAM OpenSCENARIO 2.0 format.

Properties of Actors

RoadRunner Scenario exports the properties of vehicles in the scenario using a vehicle actor.
Vehicle properties are derived from the corresponding vehicle asset in the Library Browser. For
more information on vehicle assets and their parameters, see Vehicle Assets.

5 Export Scenarios

5-16

Example
compact_car: vehicle with:
 keep(it.color == white)
 keep(it.geometry_reference == "Vehicles/CompactCar.fbx")
 keep(it.bounding_box.center.x == 0m)
 keep(it.bounding_box.center.y == 0m)
 keep(it.bounding_box.center.z == 0.705196m)
 keep(it.bounding_box.length == 3.65698m)
 keep(it.bounding_box.width == 1.86693m)
 keep(it.bounding_box.height == 1.41489m)
 keep(it.center_of_gravity.x == 0m)
 keep(it.center_of_gravity.y == 0m)
 keep(it.center_of_gravity.z == 0.800383m)
 keep(it.vehicle_category == car)
 keep(it.axles.size == 2)
 keep(it.axles[1].max_steering == 0.698132rad)
 keep(it.axles[1].wheel_diameter == 0.63043m)
 keep(it.axles[1].track_width == 1.19184m)
 keep(it.axles[1].position_x == 1.17035m)
 keep(it.axles[1].position_z == 0.315215m)
 keep(it.axles[1].number_of_wheels == 2)
 keep(it.axles[2].max_steering == 0.698132rad)
 keep(it.axles[2].wheel_diameter == 0.63043m)
 keep(it.axles[2].track_width == 1.19184m)
 keep(it.axles[2].position_x == -1.2491m)
 keep(it.axles[2].position_z == 0.315215m)
 keep(it.axles[2].number_of_wheels == 2)
 keep(it.rear_overhang == 0.579387m)

RoadRunner Scenario exports the properties of pedestrians in the scenario using a person actor.
Pedestrian properties are derived from the corresponding character asset in the Library Browser.
For more information on character assets and their parameters, see Character Assets.

Example
citizen_male: person with:
 keep(it.color == white)
 keep(it.geometry_reference == "Characters/Citizen_Male.rrchar")
 keep(it.bounding_box.center.x == 0.0681267m)
 keep(it.bounding_box.center.y == 0.0027168m)
 keep(it.bounding_box.center.z == 0.872004m)
 keep(it.bounding_box.length == 0.391623m)
 keep(it.bounding_box.width == 0.626842m)
 keep(it.bounding_box.height == 1.74811m)
 keep(it.center_of_gravity.x == 0.0681267m)
 keep(it.center_of_gravity.y == 0.0027168m)
 keep(it.center_of_gravity.z == 0.872004m)

Lane-Following Motion

When a vehicle performs a lane-following motion, RoadRunner Scenario defines the route information
of the vehicle using a create_route method in the exported file. For lane-following motions,
RoadRunner Scenario supports ASAM OpenDRIVE coordinates for roads and lanes.

Example
sedan_route_start_point: route_point = map.odr_to_route_point(road_id: "239", lane_id: "-1", s: 24.46m, t: -3.50137e-15m)
sedan_route_lane: lane with:
 keep('net.asam.opendrive: roadId:239, laneId:-1' in it.anchors)
sedan_route: route = map.create_route([sedan_route_start_point, sedan_route_lane], connect_points_by: lane)

After defining the route of the vehicle, RoadRunner Scenario uses the along modifier in the first
action phase of the vehicle to specify its movement along the route.

 Export to ASAM OpenSCENARIO

5-17

Example
do root_phase: parallel:
 sedan.drive() with:
 along(sedan_route)

Path-Following Motion

When a vehicle performs a path-following motion without Timing Data for waypoints, RoadRunner
Scenario defines the list of waypoints using a create_path method in the exported file.

Example
sedan_route_points: list of pose_3d = [sedan_route_point_1, sedan_route_point_2]
sedan_route_path: path = map.create_path(points: sedan_route_points, interpolation: smooth)
sedan_route: route = map.create_route(sedan_route_path)

When a vehicle performs a path-following motion with Timing Data for waypoints in the scenario,
RoadRunner Scenario exports the list of polyline points and time information using a
create_trajectory method.

Example
sedan_route_time_stamps: list of time = [0s, 3s]
sedan_route_points: list of pose_3d = [sedan_route_point_1, sedan_route_point_2]
sedan_route: trajectory = map.create_trajectory(points: sedan_route_points, time_stamps: sedan_route_time_stamps, interpolation: smooth)

For path-following motions, RoadRunner Scenario supports world XYZ-coordinates.

When you define a path-following motion without waypoint timing data, RoadRunner Scenario exports
the along modifier in the first action phase of the actor. However, if you define a path-following
motion with waypoint timing data, RoadRunner Scenario exports the along_trajectory modifier in
the first action phase of the actor to specify its movement along the defined trajectory.

Example
do root_phase: parallel:
 sedan.drive() with:
 along_trajectory(sedan_route)

Scenario Logic

RoadRunner Scenario exports the scenario logic specified in the Logic editor using the do block. For
exporting serial and parallel action phases, RoadRunner Scenario uses the serial and parallel
composition operators, respectively.

This image shows a scenario with one vehicle. In this scenario, there is one serial phase, which
contains these phases:

• The first phase is an action phase, which initializes the vehicle speed of 15 m/s.
• The second phase is a parallel phase consisting of two action phases, where the vehicle changes

its speed and lane simultaneously.
• The third phase is an action phase specifying that the vehicle accelerates to achieve the target

speed of 30 m/s.

5 Export Scenarios

5-18

This example shows how RoadRunner Scenario exports the scenario logic of this scenario to an ASAM
OpenSCENARIO 2.0 file.

Example
do root_phase: parallel:
 sedan.drive() with:
 along(sedan_route)
 phase_1: parallel:
 phase_2: serial:
 phase_3: sedan.drive() with:
 speed(15mps, at: start)
 lateral(distance: 0m, at: start)
 phase_4: parallel:
 phase_5: sedan.change_speed(10mps, rate_profile: constant, rate_peak: 4mpss)
 phase_6: sedan.change_lane(1, side: right, rate_profile: smooth)
 phase_7: sedan.change_speed(30mps, rate_profile: constant, rate_peak: 4mpss)
 with:
 until (environment.datetime - sim_start_time) >= 60s)

Initialize Speed Action

When you set the Relative to attribute of an Initialize Speed action to Absolute or Actor,
RoadRunner Scenario exports the Initialize Speed action using a speed modifier with the at
parameter set to start. This example shows how RoadRunner Scenario exports Initialize Speed
action when you set the Relative to attribute to Absolute.

Example
phase_3: sedan.drive() with:
 speed(17.8816mps, at: start)
 lateral(distance: 0m, at: start)

This example shows how RoadRunner Scenario exports Initialize Speed action when you set the
Relative to attribute to Actor.

Example
phase_3: sedan.drive() with:
 speed(17.8816mps, faster_than: deliveryvan, at: start, track: projected)
 lateral(distance: 0m, at: start)

When you set the Relative to attribute of an Initialize Speed action to Waypoint Time Data,
RoadRunner Scenario exports the Initialize Speed action using a custom action,
mw_assign_time_data_based_speed.

Example
sedan.mw_assign_time_data_based_speed()

 Export to ASAM OpenSCENARIO

5-19

Change Speed Action

When you set the Relative to attribute of a Change Speed action to Absolute, RoadRunner
Scenario exports the Change Speed action using a change_speed action.

Example
compact_car.change_speed(35mps, rate_profile: smooth, duration: 5s)

When you set the Relative to attribute of a Change Speed action to Actor, RoadRunner Scenario
exports the Change Speed action using a speed modifier with the at parameter set to end. If you
also set the Speed Sampling attribute of the Change Speed action to At start of action, then
RoadRunner Scenario sets the track parameter of the speed modifier to projected.

Example
phase_4: compact_car.drive() with:
 speed(10mps, slower_than: sedan, at: end, track: projected, shape: speed_shape_1)

When you set the Speed Sampling attribute of the Change Speed action to Continuous,
RoadRunner Scenario exports two speed modifiers, as shown in this example.

Example
phase_7: serial:
 compact_car.drive() with:
 speed(5mps, faster_than: sedan, at: end, track: actual, shape: speed_shape_1)
 compact_car.drive() with:
 speed(5mps, faster_than: sedan, at: all, track: actual)

The shape parameter of the first speed modifier specifies the dynamics type and profile by which the
vehicle achieves the target speed. RoadRunner Scenario exports the shape parameter as shown in
this example.

Example
speed_shape_1: common_speed_shape with:
 keep(it.rate_profile == constant)
 keep(it.rate_peak == 4mpss)

This table shows how RoadRunner Scenario maps the Dynamics Profile attribute to the
rate_profile parameter of the ASAM OpenSCENARIO 2.0 file format.

Dynamics Profile Attribute of RoadRunner
Scenario

rate_profile Parameter in Exported File

Cubic smooth
Linear constant
Step asap

This table shows how RoadRunner Scenario maps the Dynamics Type attribute to the ASAM
OpenSCENARIO 2.0 file format.

Dynamics Type Attribute of Change Speed
action in RoadRunner Scenario

Parameter of speed modifier in Exported File

With acceleration rate_peak
Over time duration

5 Export Scenarios

5-20

Dynamics Type Attribute of Change Speed
action in RoadRunner Scenario

Parameter of speed modifier in Exported File

Over distance Not supported for export

When you set the Relative to attribute of a Change Speed action to Waypoint Time Data,
RoadRunner Scenario exports the Change Speed action using a custom action,
mw_change_time_data_based_speed.

Example
compact_car.mw_change_time_data_based_speed()

Change Lane Action

RoadRunner Scenario exports Change Lane actions using the change_lane action of the ASAM
OpenSCENARIO 2.0 specifications. This table shows how RoadRunner Scenario exports the
Dynamics Type attribute to an ASAM OpenSCENARIO 2.0 file.

Dynamics Type Attribute of Change Lane
action in RoadRunner Scenario

Parameter of change_lane action in
Exported File

With lateral velocity rate_peak
Over time duration
Over distance Not supported for export

Example
phase_4: compact_car.change_lane(2, side: right, rate_profile: smooth, rate_peak: 5mps)

Change Lateral Offset Action

RoadRunner Scenario exports Change Lateral Offset actions using the follow_lane action of
the ASAM OpenSCENARIO 2.0 specifications. The Direction attribute specifies the sign of the offset
parameter value in the exported file.

Direction Attribute Offset Parameter Value in Exported File
To the left Positive value specified using the Lateral Offset

attribute
To the right Negative value specified using the Lateral Offset

attribute
To center 0

Example
phase_4: compact_car.follow_lane(-1m, rate_profile: smooth, duration: 5s)

Change Longitudinal Distance Action

When you set the Distance Type attribute of the Change Longitudinal Distance action to
Space, RoadRunner Scenario exports Change Longitudinal Distance actions using a
change_space_gap action of the ASAM OpenSCENARIO 2.0 specifications. Otherwise, it exports
Change Longitudinal Distance actions using a change_time_headway action.

 Export to ASAM OpenSCENARIO

5-21

Example
phase_4: compact_car.change_space_gap(20m, behind, sedan)

When you set the Sampling Mode attribute of the Change Longitudinal Distance action to
Continuous, RoadRunner Scenario exports an additional action entity for the specified space gap or
time headway using a keep_space_gap action or keep_time_headway action, respectively.

Example
phase_4: serial:
 compact_car.change_space_gap(20m, behind, sedan)
 compact_car.keep_space_gap(sedan, longitudinal)

Note

• RoadRunner Scenario does not support exporting the Dynamic Constraints attribute of a
Change Longitudinal Distance action.

• ASAM OpenSCENARIO 2.0 specifications support only the bounding box type of measurement for
specifying the space gap. If you set the Distance Type attribute to Space and the Measure From
attribute to Origins, then RoadRunner Scenario exports the equivalent bounding box
measurement value of the Space Distance Offset attribute.

• ASAM OpenSCENARIO 2.0 specifications support only reference points measurement for
specifying time headway. If you set the Distance Type attribute to Time, then RoadRunner
Scenario ignores the value of the Measure From attribute.

Change Behavior Parameter Action

RoadRunner Scenario exports Change Behavior Parameter actions using these steps:

1 Export the behavior parameters as parameters of a custom actor.

Example
actor mw_example_movable_object inherits vehicle:
 var headlights: string = "OFF" # Behavior Parameter
 var taillights: string = "OFF" # Behavior Parameter

2 Define a custom action because the ASAM OpenSCENARIO 2.0 file format does not specify an
equivalent action.

Example
action movable_object.mw_change_behavior_parameter inherits movable_object.action_for_movable_object:
 param_name: string
 param_value: string

3 Invoke the custom action.

Example
compact_car.mw_change_behavior_parameter(param_name: "headlights", param_value: "ON")

Change Global Parameter Action

RoadRunner Scenario exports Change Global Parameter actions using these steps:

5 Export Scenarios

5-22

1 Export the global parameters as scenario variables.

Example
Scenario Variables
var precipitation_density: float = 0

2 Define a custom action because the ASAM OpenSCENARIO 2.0 file format does not specify an
equivalent action.

Example
action mw_change_global_parameter inherits osc_action:
 var_name: string
 var_value: string

3 Invoke the custom action.

Example
mw_change_global_parameter(param_name: "precipitation_density", param_value: ".75")

Remove Actor Action

RoadRunner Scenario exports Remove Actor actions using these steps:

1 Define a custom action because the ASAM OpenSCENARIO 2.0 file format does not specify an
equivalent action.

Example
action movable_object.mw_remove_actor_action inherits movable_object.action_for_movable_object

2 Invoke the defined action.

Example
semi_truck.mw_remove_actor_action()

User Defined Action

RoadRunner Scenario exports User Defined actions using these steps:

1 Define an action, which inherits from the standard action
movable_object.action_for_movable_object.

Example
action movable_object.low_pressure_warning inherits movable_object.action_for_movable_object:
 pressure: string = "15psi"
 tire: string = "FrontRight"

2 Invoke the defined action.

Example
compact_car.low_pressure_warning(pressure: "15psi", tire: "FrontLeft")

Wait Action

RoadRunner Scenario exports Wait actions using the wait directive of the ASAM OpenSCENARIO
2.0 file format.

 Export to ASAM OpenSCENARIO

5-23

Example
wait elapsed(1s)

Actor Speed Condition

When you set the Relative to attribute of an Actor Speed condition to Absolute, RoadRunner
Scenario exports the Actor Speed condition as shown in this example.

Example
until (sedan.speed == 10mps)

When you set the Relative to attribute of an Actor Speed condition to Actor, and the Speed
Sampling attribute to At start of action, RoadRunner Scenario exports the Actor Speed
condition using the sample expression of the ASAM OpenSCENARIO 2.0 file format.

1 Define the variable to sample the speed at the start of phase.

Example
var sample_speed_1: speed = sample(compact_car.speed, @phase_1.start)

2 Use the defined variable with the until directive.

Example
until (sedan.speed == sample_speed_1+10mps)

When you set the Relative to attribute of an Actor Speed condition to Actor, and the Speed
Sampling attribute to Continuous, RoadRunner Scenario exports the Actor Speed condition as
shown in this example.

Example
until (sedan.speed == compact_car.speed+10mps)

Distance To Point Condition

When exporting Distance To Point conditions, RoadRunner Scenario first defines a custom
method for the physical_object entity.

Example
extend physical_object:
 def mw_point_euclidean_dist(reference: position_3d) -> length is undefined

Then, RoadRunner Scenario exports the Distance To Point conditions by calling the custom
method using the until directive.

Example
until (compact_car.mw_point_euclidean_dist(point_205) < 15m)

Distance To Actor Condition

When exporting Distance To Actor conditions, RoadRunner Scenario first defines a custom
method for the physical_object entity.

5 Export Scenarios

5-24

Example
extend physical_object:
 def mw_actor_euclidean_dist(reference: physical_object) -> length is undefined

Then, RoadRunner Scenario exports the Distance To Actor conditions by calling the custom
method using the until directive.

Example
until (compact_car.mw_actor_euclidean_dist(sedan) < 10m)

Behavior Parameter Condition

RoadRunner Scenario exports Behavior Parameter conditions using these steps:

1 Define the behavior parameters as the parameters of a custom actor.

Example
actor mw_example_movable_object inherits vehicle:
 var headlights: string = "OFF" # Behavior Parameter
 var taillights: string = "OFF" # Behavior Parameter

2 Use the defined behavior parameters with the until directive.

Example
until (compact_car.headlights == "ON")

Global Parameter Condition

RoadRunner Scenario exports Global Parameter conditions using these steps:

1 Define the global parameters as scenario variables.

Example
Scenario Variables
var precipitation_density: string = "0.0"

2 Use the defined global parameters with the wait directive.

Example
wait (precipitation_density > ".2")

Longitudinal Distance To Actor Condition

When you set the Measure Distance attribute of a Longitudinal Distance To Actor condition
to Along lane curvature, RoadRunner Scenario exports the Longitudinal Distance To
Actor condition using a space_gap method, which returns the space distance between the
bounding boxes of actors. In this case, RoadRunner Scenario ignores the Measure From attribute.

Example
until (compact_car.space_gap(sedan, direction: longitudinal) < 5m)

When you set the Measure Distance attribute a Longitudinal Distance To Actor condition to
Longitudinal distance only, RoadRunner Scenario exports the Longitudinal Distance To
Actor condition using an object_distance method.

 Export to ASAM OpenSCENARIO

5-25

Example
until (compact_car.object_distance(sedan, direction: longitudinal, mode: reference_points) < 5m)

Collision Condition

RoadRunner Scenario exports a Collision condition between any two actors as shown in this
example.

Example
The scenario contains three vehicles, named white, red, and yellow
until ((white.time_to_collision(red) == 0s) or (white.time_to_collision(yellow) == 0s) or (red.time_to_collision(yellow) == 0s))

When you specify one actor, RoadRunner Scenario exports the collision conditions between the
specified actor and any other actors as shown in this example.

Example
The scenario contains three vehicles, named white, red, and yellow.
The specified actor of the collision condition is white
until ((white.time_to_collision(red) == 0s) or (white.time_to_collision(yellow) == 0s)

When you specify two actors, RoadRunner Scenario exports the collision condition between the
specified actors as shown in this example.

Example
until ((white.time_to_collision(red) == 0s)

Note If a scenario contains only one actor, then RoadRunner Scenario exports the Collision
condition as a false condition. For example:

until (false)

Phase State Condition

RoadRunner Scenario exports Phase State conditions using predefined start and end events.
When you set the Phase State attribute of the Phase State condition to Running, RoadRunner
Scenario exports Phase State conditions using start events. Otherwise, it exports Phase State
conditions using end events.

Example

phase_4: compact_car.change_speed(15mps) with:
 until @phase_4.end

Simulation Time Condition

RoadRunner Scenario exports Simulation Time conditions of action phases using these steps:

1 Instantiate the environment to extract its datetime property and define a variable to sample the
simulation start time.

5 Export Scenarios

5-26

Example
environment: environment
var sim_start_time: time = sample(environment.datetime, @root_phase.start)

2 Subtract the simulation start time of the scenario from the current time.

Example
until (environment.datetime - sim_start_time >= 60s)

Note ASAM OpenSCENARIO recommends avoiding use of the Simulation Time condition for
version 2.0 of the file specification.

Duration Condition

RoadRunner Scenario exports Duration conditions using an elapsed expression.

Example
until elapsed(60s)

Fail Condition

RoadRunner Scenario exports Fail conditions using a custom event and an on directive.

Example
Event declaration to express scenario failure condition
event mw_scenario_fail_event is (compact_car.time_to_collision(sedan) == 0s)

on @mw_scenario_fail_event:
 emit fail(free_drive)

See Also

Related Examples
• “Generate Scenario Variations Using gRPC API” on page 4-2
• “Import Trajectories from ASAM OpenSCENARIO Files” on page 2-2
• “Export to ASAM OpenDRIVE”
• “Export to OpenSceneGraph”
• “Export to ASAM OpenCRG”
• “Importing ASAM OpenDRIVE Files”

External Websites
• ASAM OpenSCENARIO

 Export to ASAM OpenSCENARIO

5-27

https://www.asam.net/standards/detail/openscenario/

Simulate Scenarios with CARLA

• “Overview of RoadRunner Scenario and CARLA Cosimulation” on page 6-2
• “ CARLA Cosimulation Workflow” on page 6-4
• “Set Up CARLA for Cosimulation” on page 6-5
• “Configure RoadRunner Scenario Model” on page 6-7
• “Export Scenes and Visualizations to CARLA” on page 6-12
• “Run Cosimulations with CARLA” on page 6-14

6

Overview of RoadRunner Scenario and CARLA Cosimulation
Cosimulation enables multiple simulation tools, such as RoadRunner Scenario, CARLA, and
Automated Driving Toolbox, to coordinate so that each tool either managing specific aspects of the
simulation or grouping objects within the simulation to produce a complete simulation of a driving
scenario. RoadRunner Scenario and CARLA can cosimulate a large number of actors within a
simulation. Cosimulation enables RoadRunner Scenario to control target vehicles in a scene, with
easy state and behavior control, while the CARLA software engine or Automated Driving Toolbox
manages the ego vehicles in the scene without obfuscating the ego vehicle simulation. Cosimulation
combines the ease of development and design provided by RoadRunner Scenario with the scalability
provided by CARLA.

Scenario Simulation Engine (SSE)
The scenario simulation engine is a background server that coordinates simulations between multiple
clients. These clients can include:

• RoadRunner Scenario
• CARLA
• MATLAB and Simulink with Automated Driving Toolbox

Each of these simulation tools manage their own respective physics and environment simulation and
a specified group of actors. The SSE coordinates information and synchronizes the physics,
environments, and actors between each of the simulation clients, enabling all of the simulations to
synchronize states and simulation times. This diagram illustrates the organization of the clients and
the SSE server.

CARLA and Cosimulation Bridge
CARLA, by default, executes as a standalone simulation and simulation server. To cosimulate with
RoadRunner Scenario, CARLA requires a cosimulation bridge. The cosimulation bridge acts as an
intermediary and connects CARLA to the SSE as a client. The CARLA cosimulation bridge uses the
open-source remote procedure call (RPC) library gRPC as its communication bridge. For more
information on gRPC, see https://grpc.io/. For instructions on how to set up the cosimulation bridge
between RoadRunner Scenario and CARLA, see “Set Up CARLA for Cosimulation” on page 6-5

6 Simulate Scenarios with CARLA

6-2

https://grpc.io/

See Also
“Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink” (Automated Driving
Toolbox) | “Set Up CARLA for Cosimulation” on page 6-5 | Simulation Configuration | “CARLA
Cosimulation Workflow” on page 6-4

External Websites
• https://grpc.io/
• https://carla.readthedocs.io/en/latest/python_api/

 Overview of RoadRunner Scenario and CARLA Cosimulation

6-3

https://grpc.io/
https://carla.readthedocs.io/en/latest/python_api/

CARLA Cosimulation Workflow
RoadRunner Scenario and CARLA can cosimulate a large number of actors within a simulation.
Cosimulation enables RoadRunner Scenario to control an ego vehicle in a scene, with easy state and
behavior control, while the CARLA software engine manages other vehicles in the scene without
obfuscating the ego vehicle simulation.. Cosimulation combines the ease of development and design
provided by RoadRunner Scenario with the scalability provided by CARLA.

This is the typical workflow for cosimulation between RoadRunner Scenario and CARLA:

1 “Set Up CARLA for Cosimulation” on page 6-5 — Setup and configure CARLA software and
other required software to enable cosimulation between RoadRunner Scenario and CARLA.

Note This setup only has to be performed once for the currently installed versions of
RoadRunner Scenario and CARLA.

2 “Configure RoadRunner Scenario Model” on page 6-7 — Create or modify a new or existing
RoadRunner Scenario scene to include vehicles, such as the ego vehicle, to be controlled by
CARLA.

3 (Optionally) “Export Scenes and Visualizations to CARLA” on page 6-12 — Package and share a
scene and visualization developed in RoadRunner Scenario with CARLA to allow simultaneous
visualizations with both simulation tools.

4 “Run Cosimulations with CARLA” on page 6-14 — Run cosimulations with CARLA either as a
background process or with a shared visualization.

See Also

More About
• “Overview of RoadRunner Scenario and CARLA Cosimulation” on page 6-2

External Websites
• https://carla.org/

6 Simulate Scenarios with CARLA

6-4

https://carla.org/

Set Up CARLA for Cosimulation

Install CARLA
Download CARLA from the GitHub release site. https://github.com/carla-simulator/carla/releases.
Unzip the release into a folder, which becomes the CARLA installation directory CARLAInstall.

Note

• RoadRunner Scenario has been tested with only CARLA version 0.9.12.
• CARLA version 0.9.12 requires Python® 3.7.

Generate CARLA Cosimulation Bridge
RoadRunner Scenario and CARLA cosimulation synchronize and communicate using the CARLA
cosimulation bridge. For information on the cosimulation bridge, see “Overview of RoadRunner
Scenario and CARLA Cosimulation” on page 6-2.

Follow these steps to generate the cosimulation bridge:

1 Install Python 3.7.
2 Add Python to your path. For information on how to do this in Microsoft Windows, see https://

docs.python.org/3/using/windows.html#excursus-setting-environment-variables in the Python
documentation.

3 Update pip and install the psutil package using these commands.

python -m pip install --upgrade pip
python -m pip install psutil

4 Run RoadRunnerInstall\bin\win64\Tools\CARLA\examples\setup.bat, where
RoadRunnerInstall is the folder in which RoadRunner Scenario is installed.

Note If you install RoadRunner Scenario in the Program Files directory, you must edit the
BAT file as an administrator..

Configure Cosimulation Properties
You can optionally modify the cosimulation properties between RoadRunner Scenario and CARLA.
The cosimulation properties include timing step resolution and network location of the Scenario
Simulation Engine (SSE). For information on how to configure the cosimulation properties, see
Simulation Configuration.

See Also
“CARLA Cosimulation Workflow” on page 6-4 | “Overview of RoadRunner Scenario and CARLA
Cosimulation” on page 6-2 | Simulation Configuration

 Set Up CARLA for Cosimulation

6-5

https://github.com/carla-simulator/carla/releases
https://www.python.org/ftp/python/3.7.9/python-3.7.9-amd64.exe
https://docs.python.org/3/using/windows.html#excursus-setting-environment-variables
https://docs.python.org/3/using/windows.html#excursus-setting-environment-variables

External Websites
• https://github.com/carla-simulator/carla/releases
• Python 3.7
• https://docs.python.org/3/using/windows.html#excursus-setting-environment-variables

6 Simulate Scenarios with CARLA

6-6

https://github.com/carla-simulator/carla/releases
https://www.python.org/ftp/python/3.7.9/python-3.7.9-amd64.exe
https://docs.python.org/3/using/windows.html#excursus-setting-environment-variables

Configure RoadRunner Scenario Model
This section shows how to configure a RoadRunner Scenario model where CARLA controls the ego
vehicle and RoadRunner Scenario controls the target vehicles.

Note Before performing this configuration, you must complete the setup steps defined in “Set Up
CARLA for Cosimulation” on page 6-5.

Set Up RoadRunner Scenario Model with Vehicles
Start RoadRunner Scenario from the Windows Start menu or the app shortcut.

1 Create a new project in RoadRunner.
2 In the dialog box, click New Scene, then New Project, and create or select an empty folder,

ProjectFolder, to save your project in.
3 Select Yes to include the asset library.
4 Click File > Open Scene and select ProjectFolder/Scenes/ScenarioBasic.rrscene.

5 Switch to scenario editing mode. From the top-right corner of the RoadRunner application, select
Scene Editing, then Scenario Editing.

6 Create a new scenario. Select File > New Scenario.
7 Place a target vehicle for RoadRunner Scenario to control. Select the Sedan car from the

Library Browser, and drag it onto the scene. With the vehicle selected in the scene, specify a
path by right-clicking to create waypoints on the roads.

 Configure RoadRunner Scenario Model

6-7

8 Place the ego vehicle for CARLA to control. Select the Compact car from the Library Browser,
and drag it onto the scene. With the vehicle selected in the scene, specify a path by right-clicking
to create waypoints on the roads. In this simulation, the compact car follows the same path as
the sedan.

6 Simulate Scenarios with CARLA

6-8

Add CARLA Behavior to Vehicle
Create a new folder named Behavior in the Vehicles folder. Add a new CARLA behavior by right-
clicking in the folder and selecting New > Behavior. Set these Behavior attributes for the CARLA
Behavior.rrbehavior asset:

• Platform — External
• Platform Name — CARLA
• Model location — ../examples/CarlaEgoVehicle1.py

The CarlaEgoVehicle1.py file, included with RoadRunner Scenario, can be used as an example for
creating ego vehicle behavior, with speed, path, and set parameters actions, script using the CARLA
python API. For more information on the CARLA python APIs, see https://carla.readthedocs.io/en/
latest/core_map/#navigating-through-waypoints.

Note Two additional scripts, CarlaEgoVehicle2.py and CarlaTargetVehicle1.py, provide
sample code for an ego vehicle agent with path following and target vehicle agent behaviors,
respectively.

Select the compact car. Assign the CARLA behavior by dragging the CARLA Behavior.rrbehavior
asset to the Attributes > Vehicle > Behavior field. You can optionally rename the CARLA ego
vehicle.

 Configure RoadRunner Scenario Model

6-9

https://carla.readthedocs.io/en/latest/core_map/#navigating-through-waypoints
https://carla.readthedocs.io/en/latest/core_map/#navigating-through-waypoints

Check and update the actor mapping file RoadrunnerInstall\bin\win64\Tools\CARLA
\examples\actors.json to include your vehicles. By default, the actors.json file includes the
sedan, compact, and SUV cars. This file serves as a map between the vehicle visualization in
RoadRunner Scenario and the simulation in CARLA.
{
 "Assets/Developer/Vehicles/CompactCar.fbx_rrx": "vehicle.mini.cooper_s",
 "Assets/Developer/Vehicles/CompactCar.fbx": "vehicle.mini.cooper_s",
 "Assets/Vehicles/CompactCar.fbx_rrx": "vehicle.mini.cooper_s",
 "Assets/Vehicles/CompactCar.fbx": "vehicle.mini.cooper_s",
 "Assets/Developer/Vehicles/Sedan.fbx_rrx": "vehicle.lincoln.mkz_2020",
 "Assets/Developer/Vehicles/Sedan.fbx": "vehicle.lincoln.mkz_2020",
 "Assets/Vehicles/Sedan.fbx_rrx": "vehicle.lincoln.mkz_2020",
 "Assets/Vehicles/Sedan.fbx": "vehicle.lincoln.mkz_2020",
 "Assets/Developer/Vehicles/Suv.fbx_rrx": "vehicle.nissan.patrol",
 "Assets/Developer/Vehicles/Suv.fbx": "vehicle.nissan.patrol",
 "Assets/Vehicles/Suv.fbx_rrx": "vehicle.nissan.patrol",
 "Assets/Vehicles/Suv.fbx": "vehicle.nissan.patrol"
}

Update the platform settings in C:/Users/username/AppData/Roaming/MathWorks/
RoadRunner/R20NNa/Scenario/Config/SimulationConfiguration.xml to point to the
CARLA executable, for example CARLAInstall\WindowsNoEditor\CarlaUE4.exe, and restart
RoadRunner to apply your changes. In the path username is your Windows user profile name and
CARLAInstall is your CARLA installation directory. For example, if you install CARLA in the
C:\CARLA_n.n.n directory, make these changes to the SimulationConfiguration.xml file:
<CoSimulationServer>
 <TimeOutValues>
 <Event name="SimulationStartEvent" value="30000"/>
 ...
 </TimeOutValues>
 ...
 <Platform name="CARLA">
 <ExecutablePath>C:\CARLA_N.N.N\WindowsNoEditor\CarlaUE4.exe</ExecutablePath>
 <StartTimeOut>60000</StartTimeOut>
 </Platform>
</CoSimulationServer>

For information on how to run these cosimulations, see “Run Cosimulations with CARLA” on page 6-
14.

6 Simulate Scenarios with CARLA

6-10

See Also
“CARLA Cosimulation Workflow” on page 6-4 | “Run Cosimulations with CARLA” on page 6-14 | “Set
Up CARLA for Cosimulation” on page 6-5

 Configure RoadRunner Scenario Model

6-11

Export Scenes and Visualizations to CARLA
The export workflow described in this topic extends the workflow described in “Export to CARLA” to
show an equivalent visualization in RoadRunner Scenario and CARLA.

Export Scene from RoadRunner Scenario
1 Open your scene in RoadRunner.
2 Export the scene using the CARLA option. From the menu, select File > Export > CARLA (.fbx

+ .xml + .xodr).
3 In the Export CARLA dialog box, set the mesh tiling on the Filmbox tab and the OpenDRIVE®

options on the OpenDRIVE tab as needed.
4 Click Export.

Build and Add Plugins to CARLA
1 Build CARLA from its source. For more information, see the Windows build page of the Building

CARLA instructions.

Note The CARLA source code is cloned to C:\tree\carla\N_N_NN\carla, and Unreal® 4.24
to C:\tree\UnrealEngine

2 Copy the CARLA RoadRunner plugins to the folder C:\tree\carla\N_N_NN\carla\Unreal
\CarlaUE4\Plugins.

3 Update the Microsoft Visual Studio® project. Right-click the project file C:\tree\carla
\N_N_NN\carla\Unreal\CarlaUE4\CarlaUE4.uproject and click Switch Unreal Engine
Version.

Add Maps and Rebuild CARLA
1 Open the Unreal project file, CarlaUE4.uproject.
2 Using the Content Browser, create new RoadRunner\Maps and RoadRunner\Static folders.
3 Drag all the files exported from RoadRunner to RoadRunner\Static, and follow the

instructions in the import wizard.
4 Save ScenarioBasic.umap to the RoadRunner\Maps folder.
5 In the Unreal Project Settings, under Project > Packaging, add the map to the packaging list.

6 Simulate Scenarios with CARLA

6-12

https://carla.readthedocs.io/en/latest/build_windows/
https://carla.readthedocs.io/en/latest/build_windows/

6 Close the Unreal editor and save the assets when prompted.
7 Build the CARLA executable and package the new map to C:\tree\carla\N_N_NN\carla

\Build\UE4Carla\N_N_NN-dirty\WindowsNoEditor.
8 Set a Windows environment variable, CARLA_ROOT, to C:\tree\carla\N_N_NN\carla\Build

\UE4Carla\N_N_NN-dirty\WindowsNoEditor.
9 Update the platform settings in C:/Users/username/AppData/Roaming/MathWorks/

RoadRunner/R20NNa/Scenario/Config/SimulationConfiguration.xml to these values.

<TimeOutValues>
<Event name="SimulationStartEvent" value="30000"/>
...
</TimeOutValues>
...
<Platform name="CARLA">
 <ExecutablePath>C:\tree\carla\N_N_NN\carla\Build\UE4Carla\N_N_NN-dirty\WindowsNoEditor\CarlaUE4.exe</ExecutablePath>
 <StartTimeOut>60000</StartTimeOut>
</Platform>

The scene is now available in CARLA simulation engine.

See Also
“CARLA Cosimulation Workflow” on page 6-4 | “Export to CARLA”

 Export Scenes and Visualizations to CARLA

6-13

Run Cosimulations with CARLA
Once you have configured CARLA for cosimulation with RoadRunner Scenario, as shown in
“Cosimulate Actors with CARLA”, you can run cosimulations with CARLA as a background process,
without the user interface, or as a foreground process that produces a real-time visualization of the
scene.

Run RoadRunner Scenario Simulation with CARLA in Background
Start RoadRunner and load your scenario file. This example uses the scenario from “Configure
RoadRunner Scenario Model” on page 6-7. Select the Simulation Tool and click Play button.
RoadRunner Scenario displays the cosimulation of vehicles, in which RoadRunner Scenario controls
the blue sedan, and CARLA controls the red hatchback.

Note When you click Play, if CARLA requires additional time to start executing, the simulation can
have a delayed start.

6 Simulate Scenarios with CARLA

6-14

Run RoadRunner Scenario Cosimulation with CARLA Visualizations
Export your scene and visualization to CARLA, as shown in “Export Scenes and Visualizations to
CARLA” on page 6-12. Select the Simulation Tool and click Play. Both RoadRunner Scenario and
CARLA display the cosimulation of the vehicles.

See Also

Related Examples
• “Cosimulate Actors with CARLA”
• “CARLA Cosimulation Workflow” on page 6-4
• “Configure RoadRunner Scenario Model” on page 6-7
• “Export Scenes and Visualizations to CARLA” on page 6-12

 Run Cosimulations with CARLA

6-15

	Get Started with RoadRunner Scenario
	RoadRunner Scenario Product Description
	RoadRunner Scenario Fundamentals
	Scenes vs. Scenarios
	Design and Simulate Scenarios
	Export and Import Scenarios
	Generate Scenario Variations
	Simulate Actors with MATLAB and Simulink
	Cosimulate Actors with CARLA

	Actors in RoadRunner Scenario
	Vehicle Actors
	Pedestrian Actors
	Actor Default Types and Initial Phases
	Actor IDs

	Scenario Parameters
	Create Parameter Assets
	Behavior Parameters
	Global Parameters
	User-Defined Action Parameters
	Parameter Data Types
	Limitations

	Explore and Simulate a Simple Scenario
	Open Scenario
	Simulate Scenario
	Modify Vehicles
	Modify Driving Paths
	Modify Scenario Anchors
	Modify Scenario Logic

	Open and Explore Sample Scenarios
	Open Sample Files
	Sample Files Included with RoadRunner Scenario

	Import Scenario Data
	Import Trajectories from ASAM OpenSCENARIO Files
	Import ASAM OpenSCENARIO File Interactively
	Import ASAM OpenSCENARIO File Programmatically
	Limitations

	Import Trajectories from CSV Files
	Import CSV Files Interactively
	Import CSV Files Programmatically
	Limitations

	Import Custom Vehicle Meshes
	Set Up Bone Hierarchy
	Assign Materials
	Export Mesh and Armature
	Import Mesh to RoadRunner Scenario

	Import Custom Character Meshes
	Create Character Mesh
	Set Up Bone Hierarchy
	Create Idle, Walk, and Run Animations
	Import Character into RoadRunner Scenario

	Design and Simulate Scenarios
	Design Lane Following Scenario
	About the Scenario
	Create New Scenario
	Add Vehicles
	Add Speed Change Action
	Add Speed Change Condition
	Other Things to Try

	Design Lane Change Scenario
	About the Scenario
	Create New Scenario
	Add Ego Vehicle
	Add Lead Vehicle
	Add Lane Change Action
	Add Parallel Speed Change Action
	Set Lane Change Condition
	Other Things to Try

	Design Lane Swerve Scenario
	About the Scenario
	Create New Scenario
	Add Ego Vehicle
	Add Lead Vehicle
	Add Lane Swerve Actions
	Add Lane Swerve Conditions
	Other Things to Try

	Design Path Following Scenario
	About the Scenario
	Create New Scenario
	Add Vehicle
	Add On-Road Path Segment
	Add Off-Road Path Segment
	Refine Off-Road Path Segment
	Add Speed Change Along Path
	Other Things to Try

	Design Vehicle with Trailer Scenario
	Add Vehicle with Trailer to Scene
	Trailers in Simulation
	Multi-Vehicle Trailers

	Design Overtake Using Longitudinal Distance Condition Scenario
	About the Scenario
	Create New Scenario
	Add Reference Vehicle
	Add Ego Vehicle
	Add Lane Change Action
	Accelerate Ego to Complete Overtake on Reference Vehicle
	Use Longitudinal Distance Condition to Determine Return of Ego to Original Lane
	Return Ego to Original Lane
	Maintain Constant Longitudinal Distance Between Ego and Reference Vehicle

	Design Vehicle Following User-Defined Actions Scenario
	Model Vehicle Behavior Using User-Defined Actions in MATLAB
	Model Vehicle Behavior Using User-Defined Actions in Simulink

	Design Vehicle Following User-Defined Events Scenario
	Control a Scenario Simulation using User-Defined Events

	Switch Between Scene and Scenario Editing
	Switch Between Editing Modes
	How Scene Editing Affects Scenarios
	How Scenario Editing Affects Scenes

	Path Editing
	Add Path Along Driving Lane
	Create Lane Changes
	Extend Path with Additional Segments
	Split Path into Separate Segments
	Modify Path Tangents
	Set Specific Path Lengths
	Set Precise Waypoint Locations
	Shift Paths Within Lanes
	Create Free-Form Paths
	Export Options for Paths

	Define Scenario Logic
	Initial Action Phases
	Action Phases
	Conditions
	Serial Phases
	Parallel Phases
	Logic Editor During Simulation
	Logic Editor Limitations

	Scenario Anchoring System
	Anchor Object to Road
	Move Objects Relative to Anchor
	Manually Add Road Anchors
	Modify Anchor Attributes
	Change Anchor Parent
	Change Travel Direction of Actors
	Align Objects Using Anchors
	Set Anchors for Path Waypoints
	Relocate Scenarios to Other Scenes

	Lane and Actor Direction in Scenarios
	Bidirectional Lanes
	Negative Vehicle Speed
	Limitations

	Relocate Scenarios
	Relocate Scenario Within a Scene
	Relocate Scenario to New Scene

	Validate Scenarios
	Editing Checks
	Runtime Checks
	Export Checks

	Built-In Behavior for Vehicles
	Lane-Following Behavior
	Lane-Changing Behavior
	Lateral Offset Behavior
	Longitudinal Distance Behavior
	Path-Following Behavior

	Specify and Assign Actor Behaviors
	Actor Behavior in RoadRunner
	Actor Behavior in MATLAB and Simulink
	Actor Behavior in CARLA

	Camera Control in RoadRunner Scenario
	Visualize Scenario Simulation using Camera Options

	Programmatic Scenario Interfaces
	Generate Scenario Variations Using gRPC API
	How the RoadRunner gRPC API Works
	Open RoadRunner and Start API Server
	Load Scenario
	Define Scenario Variables
	Modify Variables Programmatically
	Export Single Scenario
	Export Scenario Variations
	Extend Scenario Variation Options

	Reuse Scenarios in Multiple Scenes Using gRPC API
	How the RoadRunner gRPC API Works
	Open RoadRunner and Start API Server
	Load and Simulate Scenario
	Load Scenario into Different Scene
	Export Scenario from Multiple Scenes
	Extend Scenario Reuse Options

	Export Multiple Scenarios Using gRPC API
	How the RoadRunner gRPC API Works
	Open RoadRunner and Start API Server
	Export Single Scenario
	Export Multiple Scenarios
	Extend RoadRunner Export Options

	Simulate a RoadRunner Scenario Using MATLAB Functions

	Export Scenarios
	Export to ASAM OpenSCENARIO
	Export Interactively
	Export Programmatically
	Visualize Exported Scenario
	ASAM OpenSCENARIO 1.x Representations
	ASAM OpenSCENARIO 2.0 Representations

	Simulate Scenarios with CARLA
	Overview of RoadRunner Scenario and CARLA Cosimulation
	Scenario Simulation Engine (SSE)
	CARLA and Cosimulation Bridge

	CARLA Cosimulation Workflow
	Set Up CARLA for Cosimulation
	Install CARLA
	Generate CARLA Cosimulation Bridge
	Configure Cosimulation Properties

	Configure RoadRunner Scenario Model
	Set Up RoadRunner Scenario Model with Vehicles
	Add CARLA Behavior to Vehicle

	Export Scenes and Visualizations to CARLA
	Export Scene from RoadRunner Scenario
	Build and Add Plugins to CARLA
	Add Maps and Rebuild CARLA

	Run Cosimulations with CARLA
	Run RoadRunner Scenario Simulation with CARLA in Background
	Run RoadRunner Scenario Cosimulation with CARLA Visualizations

